Abstract
Abstract
Objective
To compare the safety and accuracy of cortical bone trajectory screw placement between the robot-assisted and fluoroscopy-assisted approaches.
Methods
This retrospective study was conducted between November 2018 and June 2020, including 81 patients who underwent cortical bone trajectory (CBT) surgery for degenerative lumbar spine disease. CBT was performed by the same team of experienced surgeons. The patients were randomly divided into two groups—the fluoroscopy-assisted group (FA, 44 patients) and the robot-assisted group (RA, 37 patients). Robots for orthopedic surgery were used in the robot-assisted group, whereas conventional fluoroscopy-guided screw placement was used in the fluoroscopy-assisted group. The accuracy of screw placement and rate of superior facet joint violation were assessed using postoperative computed tomography (CT). The time of single screw placement, intraoperative blood loss, and radiation exposure to the surgical team were also recorded. The χ2 test and Student’s t-test were used to analyze the significance of the variables (P < 0.05).
Results
A total of 376 screws were inserted in 81 patients, including 172 screws in the robot-assisted group and 204 pedicle screws in the fluoroscopy-assisted group. Screw placement accuracy was higher in the RA group (160, 93%) than in the FA group (169, 83%) (P = 0.003). The RA group had a lower violation of the superior facet joint than the FA group. The number of screws reaching grade 0 in the RA group (58, 78%) was more than that in the FA group (56, 64%) (P = 0.041). Screw placement time was longer in the FA group (7.25 ± 0.84 min) than in the RA group (5.58 ± 1.22 min, P < 0.001). The FA group had more intraoperative bleeding (273.41 ± 118.20 ml) than the RA group (248.65 ± 97.53 ml, P = 0.313). The radiation time of the FA group (0.43 ± 0.07 min) was longer than the RA group (0.37 ± 0.10 min, P = 0.001). Furthermore, the overall learning curve tended to decrease.
Conclusions
Robot-assisted screw placement improves screw placement accuracy, shortens screw placement time, effectively improves surgical safety and efficiency, and reduces radiation exposure to the surgical team. In addition, the learning curve of robot-assisted screw placement is smooth and easy to operate.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference29 articles.
1. Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Hensons MAW, et al. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009;9(5):366–73.
2. Su BW, Chaput CD. Treatment of Spinal Conditions in Young Adults: Cortical Lumbar Screw Techniques. Oper Tech Orthop. 2015;25(3):187–93.
3. Wochna JC, Marciano R, Catanesucu I, Katz J, Spalding MC, Narayan K. Cortical Trajectory Pedicle Screws for the Fixation of Traumatic Thoracolumbar Fractures. Cureus. 2018;10(6):e2891.
4. Cofano F, Marengo N, Ajello M, Penner F, Mammi M, Petrone S, et al. The Era of Cortical Bone Trajectory Screws in Spine Surgery: A Qualitative Review with Rating of Evidence. World Neurosurg. 2019;134:14–24.
5. Zhang L, Tian N, Yang J, Ni W, Jin L. Risk of pedicle and spinous process violation during cortical bone trajectory screw placement in the lumbar spine. BMC Muscoskelet Disord. 2020;21(1):536.