In vitro evaluation of enzymatically derived blackcurrant extract as prebiotic cosmetic ingredient: extraction conditions optimization and effect on cutaneous microbiota representatives

Author:

Petrov Ivanković Anja,Milivojević Ana,Ćorović Marija,Simović Milica,Banjanac Katarina,Jansen Patrick,Vukoičić Ana,van den Bogaard Ellen,Bezbradica Dejan

Abstract

Abstract Background Blackcurrant is a rich source of polyphenols with proven physiological activity, that have lately been classified as emerging prebiotics, making its extracts suitable for application in functional food and bioactive cosmetics. However, these biomolecules are trapped in cell wall structures and nowadays, enzymatic hydrolysis is recognised as powerful tool for extraction efficiency improvement in an environmentally sound manner. This study aimed to optimize enzyme-assisted extraction to maximize yields of blackcurrant polyphenols. In addition, their prebiotic potential was tested by examining their influence on typical skin microbiota representatives as model microorganisms—beneficial coagulase-negative Staphylococcus epidermidis and two opportunistic pathogens, Staphylococcus aureus and Cutibacterium acnes. Results Among four examined commercial enzyme preparations, Viscozyme® L and Rohapect® MC, demonstrated the highest potential as extraction enhancers by increasing antioxidant activity, total polyphenol, and flavonoid contents. Furthermore, their synergetic effect enabled 95.3% increase in polyphenol concentration compared to conventional extraction with a maximum of 27.6 mg gallic acid equivalents (GAE)/g dry matter (DM) at a total enzyme concentration of 0.05 mL/g DM (Viscozyme® L to Rohapect® MC ratio 2:1) after 60 min. HPLC profiles of two samples showed differences in polyphenol composition indicating simultaneous extraction–biotransformation. At a concentration of 0.025 mg GAE/mL, PAS (prebiotic activity score) values were 0.096 and 0.172 for conventionally and enzymatically obtained extract, respectively. Moderate inhibitory effect of optimal extract concentration on Cutibacterium acnes was shown, as well. Hydrogel prepared with optimal extract concentration showed improved hydration effect, decreased irritability and increased dermatological compatibility comparing to basic formulation. Conclusions Overall results demonstrated that blackcurrant extract obtained under optimized conditions using enzymes possesses an emerging prebiotic potential for selective skin microbiota stimulation. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3