Sunflower Meal Valorization through Enzyme-Aided Fractionation and the Production of Emerging Prebiotics

Author:

Simović Milica1ORCID,Banjanac Katarina2ORCID,Veljković Milica2ORCID,Nikolić Valentina3ORCID,López-Revenga Paula4,Montilla Antonia4ORCID,Moreno Francisco Javier4ORCID,Bezbradica Dejan1

Affiliation:

1. Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegieva 4, 11000 Belgrade, Serbia

2. Innovation Center of Faculty of Technology and Metallurgy, Karnegieva 4, 11000 Belgrade, Serbia

3. Department of Food Technology and Biochemistry, Maize Research Institute, Slobodana Bajića 1, 11000 Belgrade, Serbia

4. Department of Bioactivity and Food Analysis, Food Science Research Institute CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain

Abstract

Recently, there has been a burgeoning interest in harnessing the potential of biomass and industry byproducts for the development of novel products and materials. In particular, this study explored the efficient valorization of sunflower meal (SFM), an underutilized byproduct of the oil extraction industry, usually discarded or used as low-value animal feed through enzyme-aided fractionation, specifically targeting the extraction and conversion of its abundant carbohydrate component, xylan, into emerging prebiotic compounds—xylo-oligosaccharides (XOSs)—which are recognized as promotors of a healthy gut microbiome and overall human wellbeing. An enzymatic treatment using Alcalase® 2.4 L was implemented for facilitating the recovery of a highly pure hemicellulosic fraction (92.2% carbohydrates) rich in β-(1→4)-linked xylose residues with arabinose and glucuronic acid substitutions (DP-xylan). A further enzymatic treatment of this substrate, using ROHALASE® SEP-VISCO under optimized conditions (70 °C, pH 6, 0.005% v/v enzyme concentration), produced 52.3% of XOSs with a polymerization degree (DP) less than 20 after two hours. Further analyses demonstrated that the majority of the obtained product had a DP less than 6, predominantly consisting of di- and trisaccharides (XOS2 and XOS3) without the significant generation of xylose. These findings highlight the significant potential of SFM for the generation of valuable prebiotic compounds in a sustainable manner.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3