Effects of cellulase and xylanase on fermentative profile, bacterial diversity, and in vitro degradation of mixed silage of agro-residue and alfalfa

Author:

Mu Lin,Wang Qinglan,Wang Yating,Zhang Zhifei

Abstract

AbstractThe objective was to determine effects of cellulase, xylanase, and commercial fibrolytic enzymes on fermentation quality, aerobic stability, bacterial community, and in vitro degradation of mixed silages. Mixtures of alfalfa, wheat bran, and rice straw [80:15:5 on a fresh matter (FM) basis] were ensiled for 1, 3, 5, 7, 15, 30, and 45 d after treatment with: distilled water (control, C); cellulase (E); xylanase (X); or commercial fibrolytic enzymes (EX), with all enzyme preparations applied at 100 U/g FM. The 45-day silages were subjected to an in vitro degradation test. Each of the three enzyme-treated groups enriched relative abundance (RA) of Lactobacillus, Weissella, and Stenotrophomonas maltophilia, increased water soluble carbohydrate (WSC) concentrations, and extended aerobic stability over 384 h, but concurrently inhibited growth of undesirable microbes (i.e., Acinetobacter sp, Lelliottia amnigena, and Sphingomonas sp), reducing pH and concentrations of ammonia nitrogen (AN), butyric acid (BA) and propionic acid (PA). Compared to C, adding X or EX increased the RA of L. paralimentarius and L. parabrevis, enhanced accumulation of acetic acid (AA) and crude protein (CP), and reduced hemicellulose content. Furthermore, E group silage had the highest abundance of W. cibaria. In addition, EX enriched RA of Bacillus velezensis, reduced AN concentration, increased DM degradability, total VFA production, and gas production during in vitro incubation. In conclusion, addition of X or EX enhanced ensiling by enhancing concentrations of AA; however, EX was the most promising enzyme, based on reducing AN concentration and increasing DM content and DM degradability. Graphical Abstract

Funder

Natural Science Foundation of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3