Detoxification and enhancement of in vitro rumen digestibility of exhausted olive pomace wastes through alkaline hydrogen peroxide treatment

Author:

Masmoudi Rahma,Ben Yahmed Nesrine,Moujahed Nizar,Darej Cyrine,Smaali Issam

Abstract

Abstract Background Due to the sharp rise in animal feed costs, funding alternatives to substitute high-cost raw materials used in animal feed is a persistent need. This study investigated the effect of alkaline hydrogen peroxide pretreatment as straightforward non-toxic technology to enhance the in vitro rumen digestibility of exhausted olive pomace (EOP), an abundant agricultural waste, to be suitable as animal feedstock. It examined the efficiency to eliminate the toxic phenolic content and minimize lipid oxidation of EOP. Results The pretreatment was first optimized using a central composite experimental design. Under the optimized conditions (1.6% H2O2, 5% NaOH), the measured phenolic content was 1.51 ± 0.03 mg/100 g dry weight (DW) for treated olive pomace (TOP) versus 4.91 ± 0.06 mg/100 g for the untreated one. The pretreatment showed that approximately 25% of the lignin was removed. Crude proteins, neutral detergent fibers, and acid detergent fibers yields of TOP were, respectively, 3.320 ± 0.05, 75.24 ± 0.23, and 54.05 ± 0.35 g/100 g of DW, significantly more important than those of untreated EOP. The enzymatic hydrolysis with a cellulase-based cocktail (Celluclast15 FPU/gDW), recorded a 48% of reducing sugar yield for TOP against 33% for EOP. When the in vitro organic matter digestibility (IVOMD) was assayed, the potential gas production of TOP (41.371 ml/g DM) was significantly higher than EOP (25.771 ml/g DM). The metabolizable energy of TOP (9.28 kcal/kg DM) was higher than that of EOP (7.78 kcal/kg DM). Conclusions The present study revealed that alkaline hydrogen peroxide (AHP) could be an efficient treatment for the detoxification and enhancement of in vitro rumen digestibility of olive pomace. This straightforward approach demonstrated that treated olive pomace waste may be well valorized as suitable animal feedstock. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3