Improved iron use efficiency in tomato using organically coated iron oxide nanoparticles as efficient bioavailable Fe sources

Author:

Raiesi-Ardali Tahereh,Maˈmani Leila,Chorom Mostafa,Moezzi Abdolamir

Abstract

Abstract Background Iron [Fe] deficiency is one of the nutritional issues of plants, especially in calcareous soils in which iron-fertilizers are used to solve this obstacle. Due to the pivotal role of iron, the introduction of efficient, cost-effective, and eco-friendly strategies is necessary to prevent its deficiency in plants. The nanoparticle-based formulations may provide efficient bioavailability, subsequently, reduce the amount of the required dosage of nutrients for extended periods, and decrease the environmental risks. Results In this study, the effects of different iron nanoparticles (NPs) including Fe3O4 nanoparticles (Fe3O4), citric acid coated Fe3O4 nanoparticles (Fe3O4@CA), humic acid coated Fe3O4 nanoparticles (Fe3O4@HA), and EDTA coated nanoparticles (Fe3O4@EDTA) were investigated as iron [Fe] sources on the vegetative growth and physiological parameters of tomato as a model plant in a soil system. The experimental results showed that the organically coated Fe3O4 NPs significantly increased the amount of [Fe] in the shoot and enhanced its growth. The highest and lowest amount of [Fe] was observed in the Fe3O4@HA NPs and control treatments, respectively. In addition, using organically coated Fe3O4 NPs, especially Fe3O4@HA increased plant growth and yield. Conclusions This study showed that using organically coated Fe3O4 NPs is promising for plant nutritional supplementation. In particular, the humic acid-coated Fe3O4 nanoparticles (Fe3O4@HA) were determined to be the most promising, due to more benefits for plant growth and yield compared to Fe3O4 NPs. Therefore, Fe3O4@HA nanofertilizer can be introduced as an inexpensive, effective, bioavailable, and biocompatible option to address [Fe] deficiency in the soil. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3