Author:
Raiesi-Ardali Tahereh,Maˈmani Leila,Chorom Mostafa,Moezzi Abdolamir
Abstract
Abstract
Background
Iron [Fe] deficiency is one of the nutritional issues of plants, especially in calcareous soils in which iron-fertilizers are used to solve this obstacle. Due to the pivotal role of iron, the introduction of efficient, cost-effective, and eco-friendly strategies is necessary to prevent its deficiency in plants. The nanoparticle-based formulations may provide efficient bioavailability, subsequently, reduce the amount of the required dosage of nutrients for extended periods, and decrease the environmental risks.
Results
In this study, the effects of different iron nanoparticles (NPs) including Fe3O4 nanoparticles (Fe3O4), citric acid coated Fe3O4 nanoparticles (Fe3O4@CA), humic acid coated Fe3O4 nanoparticles (Fe3O4@HA), and EDTA coated nanoparticles (Fe3O4@EDTA) were investigated as iron [Fe] sources on the vegetative growth and physiological parameters of tomato as a model plant in a soil system. The experimental results showed that the organically coated Fe3O4 NPs significantly increased the amount of [Fe] in the shoot and enhanced its growth. The highest and lowest amount of [Fe] was observed in the Fe3O4@HA NPs and control treatments, respectively. In addition, using organically coated Fe3O4 NPs, especially Fe3O4@HA increased plant growth and yield.
Conclusions
This study showed that using organically coated Fe3O4 NPs is promising for plant nutritional supplementation. In particular, the humic acid-coated Fe3O4 nanoparticles (Fe3O4@HA) were determined to be the most promising, due to more benefits for plant growth and yield compared to Fe3O4 NPs. Therefore, Fe3O4@HA nanofertilizer can be introduced as an inexpensive, effective, bioavailable, and biocompatible option to address [Fe] deficiency in the soil.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology
Reference64 articles.
1. Hell R, Stephan UW. Iron uptake, trafficking and homeostasis in plants. Planta. 2003;216(4):541–51.
2. Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol. 2009;150(1):257–71.
3. Mimmo T, et al. Rhizospheric organic compounds in the soil–microorganism–plant system: their role in iron availability. Eur J Soil Sci. 2014;65(5):629–42.
4. Askary M, Amirjani MR, Saberi T. Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus. J Plant Nutr. 2017;40(7):974–82.
5. Cañasveras JC, Sánchez-Rodríguez AR, del Campillo MC, Barrón V, Torrent J. Lowering iron chlorosis of olive by soil application of iron sulfate or siderite. Agron Sustain Dev. 2014;34(3):677–84.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献