A biocompatible NPK+Fe+Zn slow release fertilizer: synthesis and its evaluation in tomato plant growth improvement

Author:

Raiesi Ardali Tahereh,Ma’mani Leila,Chorom Mostafa,Motamedi Elaheh,Fathi Gharebaba Mohammad

Abstract

AbstractSlow-release fertilizers (SRFs) play an essential and necessary role in sustainable agriculture. Using slow-release and environment friendly fertilizers can increase the growth of plants and reduce the loss of nutrients. Considering the deficiency of iron (Fe) and zinc (Zn) in calcareous soils, a slow-release fertilizer was prepared based on the polymeric nanocomposite, which contains NPK, Fe, and Zn. Its potential was evaluated on tomato plant growth by conducting an experiment in a factorial completely randomized design with three replications. Two levels of salinity (2 and 5 ds m−1, two types of soil texture) clay loam and sandy loam) and five levels of fertilizers were examined in the experiment. To this, the graphene oxide-chitosan coated-humic acid@Fe3O4 nanoparticles (Fe3O4@HA@GO-Cs), and the graphene oxide-chitosan coated-ammonium zinc phosphate (AZP@GO-Cs) were used as Fe and Zn sources, respectively. Then, the optimal Fe and Zn fertilizers in the presence of urea, phosphorus, and potassium slow- release fertilizers (SRF) were investigated under greenhouse conditions. The results indicated that the best improvement in growth and nutrient uptake in plants was achieved by using the SRF. Notably, in the shoots of tomato plants, the nitrogen, phosphorus, potassium, Fe, and Zn concentration increased by 44, 66, 46, 75, and 74% compared to the control. The use of nanofertilizer can be an effective, biocompatible, and economical option to provide Fe and Zn demand in plants.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3