Adaptive language model training for molecular design

Author:

Blanchard Andrew E.,Bhowmik Debsindhu,Fox Zachary,Gounley John,Glaser Jens,Akpa Belinda S.,Irle Stephan

Abstract

AbstractThe vast size of chemical space necessitates computational approaches to automate and accelerate the design of molecular sequences to guide experimental efforts for drug discovery. Genetic algorithms provide a useful framework to incrementally generate molecules by applying mutations to known chemical structures. Recently, masked language models have been applied to automate the mutation process by leveraging large compound libraries to learn commonly occurring chemical sequences (i.e., using tokenization) and predict rearrangements (i.e., using mask prediction). Here, we consider how language models can be adapted to improve molecule generation for different optimization tasks. We use two different generation strategies for comparison, fixed and adaptive. The fixed strategy uses a pre-trained model to generate mutations; the adaptive strategy trains the language model on each new generation of molecules selected for target properties during optimization. Our results show that the adaptive strategy allows the language model to more closely fit the distribution of molecules in the population. Therefore, for enhanced fitness optimization, we suggest the use of the fixed strategy during an initial phase followed by the use of the adaptive strategy. We demonstrate the impact of adaptive training by searching for molecules that optimize both heuristic metrics, drug-likeness and synthesizability, as well as predicted protein binding affinity from a surrogate model. Our results show that the adaptive strategy provides a significant improvement in fitness optimization compared to the fixed pre-trained model, empowering the application of language models to molecular design tasks.

Funder

U.S. Department of Energy

Exascale Computing Project

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Reference52 articles.

1. Dong E, Du H, Gardner L (2020) An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 20(5):533–534. https://doi.org/10.1016/S1473-3099(20)30120-1

2. Blanchard AE, Gounley J, Bhowmik D, Chandra Shekar M, Lyngaas I, Gao S, Yin J, Tsaris A, Wang F, Glaser J (2022) Language models for the prediction of SARS-CoV-2 inhibitors. Int J High Perform Comput Appl 36:587

3. Minnich AJ, McLoughlin K, Tse M, Deng J, Weber A, Murad N, Madej BD, Ramsundar B, Rush T, Calad-Thomson S, Brase J, Allen JE (2020) AMPL: a data-driven modeling pipeline for drug discovery. J Chem Inform Model 60(4):1955–1968. https://doi.org/10.1021/acs.jcim.9b01053

4. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T (2018) The rise of deep learning in drug discovery. Drug Discov Today 23(6):1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

5. Acharya A, Agarwal R, Baker MB, Baudry J, Bhowmik D, Boehm S, Byler KG, Chen SY, Coates L, Cooper CJ, Demerdash O, Daidone I, Eblen JD, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Kneller DW, Kovalevsky A, Larkin J, Lawrence TJ, LeGrand S, Liu S-H, Mitchell JC, Park G, Parks JM, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers DM, Santos-Martins D, Scheinberg A, Sedova A, Shen Y, Smith JC, Smith MD, Soto C, Tsaris A, Thavappiragasam M, Tillack AF, Vermaas JV, Vuong VQ, Yin J, Yoo S, Zahran M, Zanetti-Polzi L (2020) Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19. J Chem Inf Model 60(12):5832–5852. https://doi.org/10.1021/acs.jcim.0c01010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transferring a Molecular Foundation Model for Polymer Property Predictions;Journal of Chemical Information and Modeling;2023-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3