Abstract
Abstract
Background
Epstein–Barr virus (EBV) is an important human pathogenic gammaherpesvirus with carcinogenic potential. The EBV transcriptome has previously been analyzed using both Illumina-based short read-sequencing and Pacific Biosciences RS II-based long-read sequencing technologies. Since the various sequencing methods have distinct strengths and limitations, the use of multiplatform approaches have proven to be valuable. The aim of this study is to provide a more complete picture on the transcriptomic architecture of EBV.
Methods
In this work, we apply the Oxford Nanopore Technologies MinION (long-read sequencing) platform for the generation of novel transcriptomic data, and integrate these with other’s data generated by another LRS approach, Pacific BioSciences RSII sequencing and Illumina CAGE-Seq and Poly(A)-Seq approaches. Both amplified and non-amplified cDNA sequencings were applied for the generation of sequencing reads, including both oligo-d(T) and random oligonucleotide-primed reverse transcription. EBV transcripts are identified and annotated using the LoRTIA software suite developed in our laboratory.
Results
This study detected novel genes embedded into longer host genes containing 5′-truncated in-frame open reading frames, which potentially encode N-terminally truncated proteins. We also detected a number of novel non-coding RNAs and transcript length isoforms encoded by the same genes but differing in their start and/or end sites. This study also reports the discovery of novel splice isoforms, many of which may represent altered coding potential, and of novel replication-origin-associated transcripts. Additionally, novel mono- and multigenic transcripts were identified. An intricate meshwork of transcriptional overlaps was revealed.
Conclusions
An integrative approach applying multi-technique sequencing technologies is suitable for reliable identification of complex transcriptomes because each techniques has different advantages and limitations, and the they can be used for the validation of the results obtained by a particular approach.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
University of Szeged - Open Access Fund
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference84 articles.
1. Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, et al. The order herpesvirales. Arch Virol. 2009;154:171–7.
2. Rickinson AK. Epstein–Barr virus. In: Knipe DM, Howley PM, editors. Fields virology. 5th ed. Philadelphia: Lippincott, Williams and Wilkins; 2007. p. 2655–700.
3. Young LS, Yap LF, Murray PG. Epstein–Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16:789–802.
4. Shannon-Lowe C, Rickinson A. The global landscape of EBV-associated tumors. Front Oncol. 2019;9:713.
5. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180–90. https://doi.org/10.1016/S2214-109X(19)30488-7.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献