Noncontiguous operon atlas for the Staphylococcus aureus genome

Author:

Iturbe Pablo1,Martín Alvaro San1,Hamamoto Hiroshi2,Marcet-Houben Marina34,Galbaldón Toni3456,Solano Cristina1,Lasa Iñigo1ORCID

Affiliation:

1. Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Hospital Universitario de Navarra (HUN), IdiSNA , Irunlarrea 3 , Pamplona, 31008 Navarra, Spain

2. Faculty of Medicine, Department of Infectious diseases, Yamagata University, 2-2-2 Lida-Nishi, 990-9585 Yamagata , Japan

3. Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell , 1-3, 08034 Barcelona , Spain

4. Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Baldiri Reixac, 10, 08028 Barcelona, Spain

5. Catalan Institution for Research and Advanced Studies (ICREA) , 08010 Barcelona , Spain

6. CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III , 28029 Madrid , Spain

Abstract

Abstract Bacteria synchronize the expression of genes with related functions by organizing genes into operons so that they are cotranscribed together in a single polycistronic messenger RNA. However, some cellular processes may benefit if the simultaneous production of the operon proteins coincides with the inhibition of the expression of an antagonist gene. To coordinate such situations, bacteria have evolved noncontiguous operons (NcOs), a subtype of operons that contain one or more genes that are transcribed in the opposite direction to the other operon genes. This structure results in overlapping transcripts whose expression is mutually repressed. The presence of NcOs cannot be predicted computationally and their identification requires a detailed knowledge of the bacterial transcriptome. In this study, we used direct RNA sequencing methodology to determine the NcOs map in the Staphylococcus aureus genome. We detected the presence of 18 NcOs in the genome of S. aureus and four in the genome of the lysogenic prophage 80α. The identified NcOs comprise genes involved in energy metabolism, metal acquisition and transport, toxin–antitoxin systems, and control of the phage life cycle. Using the menaquinone operon as a proof of concept, we show that disarrangement of the NcO architecture results in a reduction of bacterial fitness due to an increase in menaquinone levels and a decrease in the rate of oxygen consumption. Our study demonstrates the significance of NcO structures in bacterial physiology and emphasizes the importance of combining operon maps with transcriptomic data to uncover previously unnoticed functional relationships between neighbouring genes.

Funder

Spanish Ministry of Science and Innovation

Fondo Europeo de Desarrollo Regional

European Union

Institute for Fermentation, Osaka

University Department of Navarra government

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3