Genome Sequence of Staphylococcus aureus Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands

Author:

Baba Tadashi1,Bae Taeok2,Schneewind Olaf3,Takeuchi Fumihiko4,Hiramatsu Keiichi1

Affiliation:

1. Department of Microbiology and Infection Control Science, Juntendo University, Tokyo 113-8421, Japan

2. Microbiology and Immunology, Indiana University School of Medicine, Northwest 3400 Broadway, Med. Ed. 3056, Gary, Indiana 46408

3. Department of Microbiology, The University of Chicago, 920 E. 58th Street, Chicago, Illinois 60637

4. Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom

Abstract

ABSTRACT Strains of Staphylococcus aureus , an important human pathogen, display up to 20% variability in their genome sequence, and most sequence information is available for human clinical isolates that have not been subjected to genetic analysis of virulence attributes. S. aureus strain Newman, which was also isolated from a human infection, displays robust virulence properties in animal models of disease and has already been extensively analyzed for its molecular traits of staphylococcal pathogenesis. We report here the complete genome sequence of S. aureus Newman, which carries four integrated prophages, as well as two large pathogenicity islands. In agreement with the view that S. aureus Newman prophages contribute important properties to pathogenesis, fewer virulence factors are found outside of the prophages than for the highly virulent strain MW2. The absence of drug resistance genes reflects the general antibiotic-susceptible phenotype of S. aureus Newman. Phylogenetic analyses reveal clonal relationships between the staphylococcal strains Newman, COL, NCTC8325, and USA300 and a greater evolutionary distance to strains MRSA252, MW2, MSSA476, N315, Mu50, JH1, JH9, and RF122. However, polymorphism analysis of two large pathogenicity islands distributed among these strains shows that the two islands were acquired independently from the evolutionary pathway of the chromosomal backbones of staphylococcal genomes. Prophages and pathogenicity islands play central roles in S. aureus virulence and evolution.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3