KSHV 3.0: a state-of-the-art annotation of the Kaposi’s sarcoma-associated herpesvirus transcriptome using cross-platform sequencing

Author:

Prazsák István1,Tombácz Dóra1,Fülöp Ádám1,Torma Gábor1,Gulyás Gábor1,Dörmő Ákos1,Kakuk Balázs1,McKenzie Spires Lauren2,Toth Zsolt2ORCID,Boldogkői Zsolt1ORCID

Affiliation:

1. Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary

2. Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA

Abstract

ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing data set of the lytic and latent KSHV transcriptome using native RNA and direct cDNA-sequencing methods. This was supplemented with Cap Analysis of Gene Expression sequencing based on a short-read platform. We also utilized data sets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding by integrating our data on the viral transcripts with translatomic information from other publications. IMPORTANCE Deciphering the viral transcriptome of Kaposi’s sarcoma-associated herpesvirus is of great importance because we can gain insight into the molecular mechanism of viral replication and pathogenesis, which can help develop potential targets for antiviral interventions. Specifically, the identification of substantial transcriptional overlaps by this work suggests the existence of a genome-wide interference between transcriptional machineries. This finding indicates the presence of a novel regulatory layer, potentially controlling the expression of viral genes.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3