Antibody induction and immune response in nasal cavity by third dose of SARS-CoV-2 mRNA vaccination
-
Published:2023-07-13
Issue:1
Volume:20
Page:
-
ISSN:1743-422X
-
Container-title:Virology Journal
-
language:en
-
Short-container-title:Virol J
Author:
Ishizaka Aya,Koga Michiko,Mizutani Taketoshi,Uraki Ryuta,Yamayoshi Seiya,Iwatsuki-Horimoto Kiyoko,Yamamoto Shinya,Imai Masaki,Tsutsumi Takeya,Suzuki Yutaka,Kawaoka Yoshihiro,Yotsuyanagi Hiroshi
Abstract
Abstract
Background
The mucosa serves as the first defence against pathogens and facilitates the surveillance and elimination of symbiotic bacteria by mucosal immunity. Recently, the mRNA vaccine against SARS-CoV-2 has been demonstrated to induce secretory antibodies in the oral and nasal cavities in addition to a systemic immune response. However, the mechanism of induced immune stimulation effect on mucosal immunity and commensal bacteria profile remains unclear.
Methods
Here, we longitudinally analysed the changing nasal microbiota and both systemic and nasal immune response upon SARS-CoV-2 mRNA vaccination, and evaluated how mRNA vaccination influenced nasal microbiota in 18 healthy participants who had received the third BNT162b.
Results
The nasal S-RBD IgG level correlated significantly with plasma IgG levels until 1 month and the levels were sustained for 3 months post-vaccination. In contrast, nasal S-RBD IgA induction peaked at 1 month, albeit slightly, and correlated only with plasma IgA, but the induction level decreased markedly at 3 months post-vaccination. 16 S rRNA sequencing of the nasal microbiota post-vaccination revealed not an overall change, but a decrease in certain opportunistic bacteria, mainly Fusobacterium. The decrease in these bacteria was more pronounced in those who exhibited nasal S-RBD IgA induction, and those with higher S-RBD IgA induction had lower relative amounts of potentially pathogenic bacteria such as Pseudomonas pre-vaccination. In addition, plasma and mucosal S-RBD IgG levels correlated with decreased commensal pathogens such as Finegoldia.
Conclusions
These findings suggest that the third dose of SARS-CoV-2 mRNA vaccination induced S-RBD antibodies in the nasal mucosa and may have stimulated mucosal immunity against opportunistic bacterial pathogens. This effect, albeit probably secondary, may be considered one of the benefits of mRNA vaccination. Furthermore, our data suggest that a cooperative function of mucosal and systemic immunity in the reduction of bacteria and provides a better understanding of the symbiotic relationship between the host and bacteria in the nasal mucosa.
Funder
Japan Society for the Promotion of Science The Yamaguchi Education and Scholarship Foundation Moonshot Research and Development Program Japan Agency for Medical Research and Development
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Virology
Reference53 articles.
1. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, Dela Cruz CS, Wang Y, Wu C, Xiao Y, et al. Profiling early humoral response to diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020;71:778–85. 2. Long QX, Liu BZ, Deng HJ, Wu GC, Deng K, Chen YK, Liao P, Qiu JF, Lin Y, Cai XF, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26:845–8. 3. Okba NMA, Muller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, Lamers MM, Sikkema RS, de Bruin E, Chandler FD, et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific antibody responses in Coronavirus Disease Patients. Emerg Infect Dis. 2020;26:1478–88. 4. Ceron JJ, Lamy E, Martinez-Subiela S, Lopez-Jornet P, Capela ESF, Eckersall PD, Tvarijonaviciute A. Use of Saliva for diagnosis and monitoring the SARS-CoV-2: a General Perspective. J Clin Med 2020, 9. 5. Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, Li Z, Chao G, Rojas OL, Bang YM et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol 2020, 5.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|