Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi

Author:

Kienle Nickias,Kloepper Tobias H,Fasshauer Dirk

Abstract

Abstract Background In eukaryotic cells, directional transport between different compartments of the endomembrane system is mediated by vesicles that bud from a donor organelle and then fuse with an acceptor organelle. A family of integral membrane proteins, termed soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, constitute the key machineries of these different membrane fusion events. Over the past 30 years, the yeast Saccharomyces cerevisiae has served as a powerful model organism for studying the organization of the secretory and endocytic pathways, and a few years ago, its entire set of SNAREs was compiled. Results Here, we make use of the increasing amount of genomic data to investigate the history of the SNARE family during fungi evolution. Moreover, since different SNARE family members are thought to demarcate different organelles and vesicles, this approach allowed us to compare the organization of the endomembrane systems of yeast and animal cells. Our data corroborate the notion that fungi generally encompass a relatively simple set of SNARE proteins, mostly comprising the SNAREs of the proto-eukaryotic cell. However, all fungi contain a novel soluble SNARE protein, Vam7, which carries an N-terminal PX-domain that acts as a phosphoinositide binding module. In addition, the points in fungal evolution, at which lineage-specific duplications and diversifications occurred, could be determined. For instance, the endosomal syntaxins Pep12 and Vam3 arose from a gene duplication that occurred within the Saccharomycotina clade. Conclusion Although the SNARE repertoire of baker's yeast is highly conserved, our analysis reveals that it is more deviated than the ones of basal fungi. This highlights that the trafficking pathways of baker's yeast are not only different to those in animal cells but also are somewhat different to those of many other fungi.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3