A look beyond the QR code of SNARE proteins

Author:

Yadav DeepakORCID,Hacisuleyman AysimaORCID,Dergai Mykola,Khalifeh Dany,Abriata Luciano A.ORCID,Dal Peraro MatteoORCID,Fasshauer DirkORCID

Abstract

AbstractSoluble N-ethylmaleimide-sensitive factor Attachment protein REceptor (SNARE) proteins catalyze the fusion process of vesicles with target membranes in eukaryotic cells. To do this, they assemble in a zipper-like fashion into stable complexes between the membranes. Structural studies have shown that the complexes consist of four different helices, which we subdivide into Qa-, Qb-, Qc-, and R-helix on the basis of their sequence signatures. Using a combination of biochemistry, modeling and molecular dynamics, we investigated how the four different types are arranged in a complex. We found that there is a matching pattern in the core of the complex that dictates the position of the four fundamental SNARE types in the bundle, resulting in a QabcR complex. In the cell, several different cognate QabcR-SNARE complexes catalyze the different transport steps between the compartments of the endomembrane system. Each of these cognate QabcR complexes is compiled from a repertoire of about 20 SNARE subtypes. Our studies show that exchange within the four types is largely tolerated structurally, although some non-cognate exchanges lead to structural imbalances. This suggests that SNARE complexes have evolved for a catalytic mechanism, a mechanism that leaves little scope for selectivity beyond the QabcR rule.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3