Physiological and transcriptomic analyses provide insight into thermotolerance in desert plant Zygophyllum xanthoxylum

Author:

Bai Wan-Peng,Li Hu-Jun,Hepworth Shelley R.,Liu Hai-Shuang,Liu Lin-Bo,Wang Gai-Ni,Ma Qing,Bao Ai-Ke,Wang Suo-MinORCID

Abstract

Abstract Background Heat stress has adverse effects on the growth and reproduction of plants. Zygophyllum xanthoxylum, a typical xerophyte, is a dominant species in the desert where summer temperatures are around 40 °C. However, the mechanism underlying the thermotolerance of Z. xanthoxylum remained unclear. Results Here, we characterized the acclimation of Z. xanthoxylum to heat using a combination of physiological measurements and transcriptional profiles under treatments at 40 °C and 45 °C, respectively. Strikingly, moderate high temperature (40 °C) led to an increase in photosynthetic capacity and superior plant performance, whereas severe high temperature (45 °C) was accompanied by reduced photosynthetic capacity and inhibited growth. Transcriptome profiling indicated that the differentially expressed genes (DEGs) were related to transcription factor activity, protein folding and photosynthesis under heat conditions. Furthermore, numerous genes encoding heat transcription shock factors (HSFs) and heat shock proteins (HSPs) were significantly up-regulated under heat treatments, which were correlated with thermotolerance of Z. xanthoxylum. Interestingly, the up-regulation of PSI and PSII genes and the down-regulation of chlorophyll catabolism genes likely contribute to improving plant performance of Z. xanthoxylum under moderate high temperature. Conclusions We identified key genes associated with of thermotolerance and growth in Z. xanthoxylum, which provide significant insights into the regulatory mechanisms of thermotolerance and growth regulation in Z. xanthoxylum under high temperature conditions.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference91 articles.

1. David SB, Rosamond LN. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009;323:240–4.

2. Wheeler T, Von BJ. Climate change impacts on global food security. Science. 2013;341:508–13.

3. IPCC. Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B, eds. Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY, USA: Cambridge University Press. 2021.

4. Chao LM, Liu YQ, Chen DY, Xue XY, Mao YB, Chen XY. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage. Mol Plant. 2017;10:735–48.

5. Hou Y, Yan Y, Cao X. Epigenetic regulation of thermomorphogenesis in Arabidopsis thaliana. Abiotech. 2022;3:12–24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3