Evolution and function analysis of auxin response factors reveal the molecular basis of the developed root system of Zygophyllum xanthoxylum

Author:

Xing Ying,Liu Chunli,Zheng Chuan,Li Hong,Yin Hongju

Abstract

Abstract Background As a xerophytic shrub, forming developed root system dominated with lateral roots is one of the effective strategies for Zygophyllum xanthoxylum to adapt to desert habitat. However, the molecular mechanism of lateral root formation in Z. xanthoxylum is still unclear. Auxin response factors (ARFs) are a master family of transcription factors (TFs) in auxin-mediated biological processes including root growth and development. Results Here, to determine the relationship between ARFs and root system formation in Z. xanthoxylum, a total of 30 potential ZxARF genes were first identified, and their classifications, evolutionary relationships, duplication events and conserved domains were characterized. 107 ARF protein sequences from alga to higher plant species including Z. xanthoxylum are split into A, B, and C 3 Clades, consisting with previous studies. The comparative analysis of ARFs between xerophytes and mesophytes showed that A-ARFs of xerophytes expanded considerably more than that of mesophytes. Furthermore, in this Clade, ZxARF5b and ZxARF8b have lost the important B3 DNA-binding domain partly and completely, suggesting both two proteins may be more functional in activating transcription by dimerization with AUX/IAA repressors. qRT-PCR results showed that all A-ZxARFs are high expressed in the roots of Z. xanthoxylum, and they were significantly induced by drought stress. Among these A-ZxARFs, the over-expression assay showed that ZxARF7c and ZxARF7d play positive roles in lateral root formation. Conclusion This study provided the first comprehensive overview of ZxARFs and highlighted the importance of A-ZxARFs in the lateral root development.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Science & Technology Project of Gansu Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3