Involvement of MdWRKY40 in the defense of mycorrhizal apple against fusarium solani

Author:

Wang Mei,Tang Weixiao,Xiang Li,Chen Xuesen,Shen Xiang,Yin Chengmiao,Mao Zhiquan

Abstract

Abstract Background Apple (Malus domestica Borkh.) is an important economic crop. The pathological effects of Fusarium solani, a species complex of soilborne pathogens, on the root systems of apple plants was unknown. It was unclear how mycorrhizal apple seedlings resist infection by F. solani. The transcriptional profiles of mycorrhizal and non-mycorrhizal plants infected by F. solani were compared using RNA-Seq. Results Infection with F. solani significantly reduced the dry weight of apple roots, and the roots of mycorrhizal apple plants were less damaged when the plants were infected with F. solani. They also had enhanced activity of antioxidant enzymes and a reduction in the oxidation of membrane lipids. A total of 1839 differentially expressed genes (DEGs) were obtained after mycorrhizal and non-mycorrhizal apple plants were infected with F. solani. A gene ontogeny (GO) analysis showed that most of the DEGs were involved in the binding of ADP and calcium ions. In addition, based on a MapMan analysis, a large number of DEGs were found to be involved in the response of mycorrhizal plants to stress. Among them, the overexpressed transcription factor MdWRKY40 significantly improved the resistance of the apple ‘Orin’ callus to F. solani and the expression of the resistance gene MdGLU by binding the promoter of MdGLU. Conclusion This paper outlines how the inoculation of apple seedlings roots by arbuscular mycorrhizal fungi responded to infection with F. solani at the transcriptional level. In addition, MdWRKY40 played an important role in the resistance of mycorrhizal apple seedlings to infection with F. solani.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3