Towards carotenoid biofortification in wheat: identification of XAT-7A1, a multicopy tandem gene responsible for carotenoid esterification in durum wheat

Author:

Rodríguez-Suárez C,Requena-Ramírez MD,Hornero-Méndez D,Atienza SG

Abstract

AbstractYellow pigment content, mainly due to the accumulation of carotenoids, is a quality trait in durum wheat grain as it confers the bright yellow color to pasta preferred by consumers. Also, carotenoids are essential nutrients exerting important biological functions in human health. Consequently, biofortification strategies have been developed in many crops to increase carotenoid content. In this context, carotenoid esterification is emerging as a new breeding target for wheat biofortification, as carotenoid esters have been found to promote both carotenoid accumulation and stability. Until recently, no carotenoid esters have been identified in significant proportions in durum wheat grains, and interspecific breeding programs have been started to transfer esterification ability from common wheat and Hordeum chilense.In this work, XAT-7A1 is identified as the gene responsible for carotenoid esterification in durum wheat. Sequencing, copy number variation and mapping results show that XAT-7A1 is organized as tandem or proximal GDSL esterase/lipase copies in chromosome 7A. Three XAT-7A1 haplotypes are described: Type 1 copies, associated with high levels of carotenoid esters (diesters and monoesters) production and high expression in grain development; Type 2 copies, present in landraces with low levels of carotenoid esters (monoesters) or no esters; and Type 3 copies, without the signal peptide, resulting in zero-ester phenotypes.The identification of XAT-7A1 is a necessary step to make the carotenoid esterification ability available for durum and bread wheat breeding, which should be focused on the Type 1 XAT-7A1 haplotype, which may be assessed as a single gene since XAT-7A1 copies are inherited together.

Funder

Ministerio de Ciencia e Innovación

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3