Author:
Rahimi Mehdi,Kordrostami Mojtaba,Mohamadhasani Fereshteh,Chaeikar Sanam Safaei
Abstract
Abstract
Background
Abiotic and biotic stresses induce oxidative processes in plant cells that this process starts with the production of ROSs which cause damage to the proteins. Therefore, plants have increased their antioxidant activity to defend against this oxidative stress to be able to handle stress better. In this research, 14 different tea accessions in a randomized complete block design with two replications were evaluated in two normal and drought stress conditions, and their antioxidant activity was measured by DPPH-free radicals’ assay and gene expression analysis.
Results
The results of gene expression analysis showed that the 100 and 399 accessions and Bazri cultivar had high values for most of the antioxidant enzymes, ascorbate peroxidase, superoxide dismutase, catalase, and peroxidase under drought stress conditions while the 278 and 276 accessions had the lowest amount of antioxidant enzymes in the same situation. Results showed that the IC50 of the BHT combination was 90.12 μg/ ml. Also, The IC50 of accessions ranged from 218 to 261 μg/ml and 201–264 μg/ml at normal and drought stress conditions, respectively. The 100 and 399 accessions showed the lowest IC50 under normal and drought stress conditions, while 278 and 276 accessions had the highest value for IC50. The antioxidant activity of tea accession extracts under normal conditions was ranged from 25 to 69% for accessions 278 and 100, respectively. While, the antioxidant activities of extracts under drought stress condition was 12 to 83% for accessions 276 and 100, respectively. So, according to the results, 100 and 399 accessions exhibited the least IC50 and more antioxidant activity under drought stress conditions and were identified as stress-tolerant accessions. However, 278 and 276 accessions did not show much antioxidant activity and were recognized as sensitive accessions under drought stress conditions.
Conclusions
These results demonstrate that total phenol content, antioxidant activity, and the oxygen-scavenging system can be used as a descriptor for identifying drought-tolerant accessions.
Publisher
Springer Science and Business Media LLC
Reference72 articles.
1. Sivapalan P, Kulasegaram S, Kathiravetpillai A. Handbook on tea. Sri Lanka: Tea Research Institute of Sri Lanka; 1986.
2. Gupta S, Bharalee R, Bhorali P, Das SK, Bhagawati P, Bandyopadhyay T, et al. Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling. Mol Biotechnol. 2013;53(3):237–48.
3. Kordrostami M, Rabiei B. Breeding for improved crop resistance to osmotic stress. In: Handbook of Plant and Crop Stress. Fourth ed. Florida: CRC Press, Taylor & Francis; 2019. p. 593–602.
4. Mafakheri M, Kordrostami M. Role of Molecular Tools and Biotechnology in Climate-Resilient Agriculture. In: Hasanuzzaman M, editor. lant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II: Mechanisms of Adaptation and Stress Amelioration. Singapore: Springer Singapore; 2020. p. 491–529.
5. Kordrostami M, Rabiei B, Ebadi AA. Oxidative Stress in Plants: Production, Metabolism, and Biological Roles of Reactive Oxygen Species. In: Handbook of Plant and Crop Stress. Fourth ed. Florida: CRC Press, Taylor & Francis; 2019. p. 85–92.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献