Transcriptome analysis of antioxidant system response in Styrax tonkinensis seedlings under flood-drought abrupt alternation

Author:

Chen Hong,Han Chao,Cui Luomin,Liu Zemao,Yu Fangyuan

Abstract

Abstract Background Styrax tonkinensis (Pierre) Craib ex Hartwich faces challenges in expanding in the south provinces of Yangtze River region due to climate extremes like flood-drought abrupt alternation (FDAA) caused by global warming. Low tolerance to waterlogging and drought restricts its growth in this area. To study its antioxidant system and molecular response related to the peroxisome pathway under FDAA, we conducted experiments on two-year-old seedlings, measuring growth indexes, reactive oxygen species content, antioxidant enzyme activity, and analyzing transcriptomes under FDAA and drought (DT) conditions. Results The physiological results indicated a reduction in water content in roots, stems, and leaves under FDAA conditions. The most significant water loss, amounting to 15.53% was observed in the leaves. Also, ROS accumulation was predominantly observed in leaves rather than roots. Through transcriptome analysis, we assembled a total of 1,111,088 unigenes (with a total length of 1,111,628,179 bp). Generally, SOD1 and CAT genes in S. tonkinensis seedlings were up-regulated to scavenge ROS. Conversely, the MPV17 gene exhibited contrasting reaction with up-regulation in leaves and down-regulation in roots, leading to increased ROS accumulation in leaves. CHS and F3H were down-regulated, which did not play an essential role in scavenging ROS. Moreover, the down-regulation of PYL, CPK and CALM genes in leaves may not contribute to stomatal closure, thereby causing continuous water loss through transpiration. Whereas, the decreased root vigor during the waterlogging phase and up-regulated CPK and CALM in roots posed obstacles to water absorption by roots. Additionally, the DEGs related to energy metabolism, including LHCA and LHCB, were negatively regulated. Conclusions The ROS generation triggered by MPV17 genes was not the main reason for the eventual mortality of the plant. Instead, plant mortality may be attributed to water loss during the waterlogging phase, decreased root water uptake capacity, and continued water loss during the subsequent drought period. This study establishes a scientific foundation for comprehending the morphological, physiological, and molecular facts of S. tonkinensis under FDAA conditions.

Funder

Graduate Research and Innovation Projects of Jiangsu Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3