Generalized Lommel–Wright function and its geometric properties

Author:

Zayed Hanaa M.,Mehrez Khaled

Abstract

AbstractThe normalization of the combination of generalized Lommel–Wright function$\mathfrak{J}_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z)$Jκ1,κ2κ3,m(z)(mN,$\kappa _{3}>0$κ3>0andκ1,κ2C) defined by$\mathfrak{J}_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z):=\Gamma ^{m}( \kappa _{1}+1)\Gamma (\kappa _{1}+\kappa _{2}+1)2^{2\kappa _{1}+ \kappa _{2}}z^{1-(\kappa _{2}/2)-\kappa _{1}}\mathcal{J}_{\kappa _{1},\kappa _{2}}^{ \kappa _{3},m}(\sqrt{z})$Jκ1,κ2κ3,m(z):=Γm(κ1+1)Γ(κ1+κ2+1)22κ1+κ2z1(κ2/2)κ1Jκ1,κ2κ3,m(z), where$\mathcal{J}_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z):=(1-2\kappa _{1}-\kappa _{2})J_{\kappa _{1},\kappa _{2}}^{ \kappa _{3},m}(z)+z ( J_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z) ) ^{\prime}$Jκ1,κ2κ3,m(z):=(12κ1κ2)Jκ1,κ2κ3,m(z)+z(Jκ1,κ2κ3,m(z))and$$ J_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z)= \biggl( \frac{z}{2} \biggr) ^{2\kappa _{1}+\kappa _{2}}\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma ^{m} ( n+\kappa _{1}+1 ) \Gamma ( n\kappa _{3}+\kappa _{1}+\kappa _{2}+1 ) } \biggl( \frac{z}{2} \biggr) ^{2n}, $$Jκ1,κ2κ3,m(z)=(z2)2κ1+κ2n=0(1)nΓm(n+κ1+1)Γ(nκ3+κ1+κ2+1)(z2)2n,was previously introduced and some of its geometric properties have been considered. In this paper, we report conditions for$\mathfrak{J}_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z)$Jκ1,κ2κ3,m(z)to be starlike and convex of orderα,$0\leq \alpha <1$0α<1, inside the open unit disk using some technical manipulations of the gamma and digamma functions, as well as inequality for the digamma function that has been proved (Guo and Qi in Proc. Am. Math. Soc. 141(3):1007–1015, 2013). In addition, a method presented by Lorch (J. Approx. Theory 40(2):115–120 1984) and further developed by Laforgia (Math. Compet. 42(166):597–600 1984) is applied to establish firstly sharp inequalities for the shifted factorial that will be used to obtain the order of starlikeness and convexity. We compare then the obtained orders of starlikeness and convexity with some important consequences in the literature as well as the results proposed by all techniques to demonstrate the accuracy of our approach. Ultimately, a lemma by (Fejér in Acta Litt. Sci. 8:89–115 1936) is used to prove that the modified form of the function$\mathfrak{J}_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z)$Jκ1,κ2κ3,m(z)defined by$\mathcal{I}_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z)=\mathfrak{J}_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z)\ast z/(1+z) \ $Iκ1,κ2κ3,m(z)=Jκ1,κ2κ3,m(z)z/(1+z)is in the class of starlike and convex functions, respectively. Further work regarding the function$\mathfrak{J}_{\kappa _{1},\kappa _{2}}^{\kappa _{3},m}(z)\ $Jκ1,κ2κ3,m(z)is underway and will be presented in a forthcoming paper.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference34 articles.

1. Aktaş, İ., Baricz, Á.: Bounds for radii of starlikeness of some q-Bessel functions. Results Math. 72(1), 947–963 (2017)

2. Aktaş, İ., Baricz, Á., Orhan, H.: Bounds for radii of starlikeness and convexity of some special functions. Turk. J. Math. 42(1), 211–226 (2018)

3. Aktaş, İ., Baricz, Á., Singh, S.: Geometric and monotonic properties of hyper-Bessel functions. Ramanujan J. 51(2), 275–295 (2020)

4. Aktaş, İ., Baricz, Á., Yağmur, N.: Bounds for the radii of univalence of some special functions. Math. Inequal. Appl. 20(3), 825–843 (2017)

5. Aktaş, İ., Orhan, H.: Bounds for radii of convexity of some q-Bessel functions. Bull. Korean Math. Soc. 57(2), 355–369 (2020)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3