Author:
Bulboacă Teodor,Zayed Hanaa M.
Abstract
AbstractIn continuation of Zayed and Bulboacă work in (J. Inequal. Appl. 2022:158, 2022), this paper discusses the geometric characterization of the normalized form of the generalized Bessel function defined by $$\begin{aligned} \mathrm{V}_{\rho,r}(z):=z+\sum_{k=1}^{\infty} \frac{(-r)^{k}}{4^{k}(1)_{k}(\rho )_{k}}z^{k+1}, \quad z\in \mathbb{U}, \end{aligned}$$
V
ρ
,
r
(
z
)
:
=
z
+
∑
k
=
1
∞
(
−
r
)
k
4
k
(
1
)
k
(
ρ
)
k
z
k
+
1
,
z
∈
U
,
for $\rho, r\in \mathbb{C}^{\ast}:=\mathbb{C}\setminus \{0\}$
ρ
,
r
∈
C
∗
:
=
C
∖
{
0
}
. Precisely, we will use a sharp estimate for the Pochhammer symbol, that is, $\Gamma (a+n)/\Gamma (a+1)>(a+\alpha )^{n-1}$
Γ
(
a
+
n
)
/
Γ
(
a
+
1
)
>
(
a
+
α
)
n
−
1
, or equivalently $(a)_{n}>a(a+\alpha )^{n-1}$
(
a
)
n
>
a
(
a
+
α
)
n
−
1
, that was firstly proved by Baricz and Ponnusamy for $n\in \mathbb{N}\setminus \{1,2\}$
n
∈
N
∖
{
1
,
2
}
, $a>0$
a
>
0
and $\alpha \in [0,1.302775637\ldots ]$
α
∈
[
0
,
1.302775637
…
]
in (Integral Transforms Spec. Funct. 21(9):641–653, 2010), and then proved in our paper by another method to improve it using the partial derivatives and the two-variable functions’ extremum technique for $n\in \mathbb{N}\setminus \{1,2\}$
n
∈
N
∖
{
1
,
2
}
, $a>0$
a
>
0
and $0\leq \alpha \leq \sqrt{2}$
0
≤
α
≤
2
, and used to investigate the orders of starlikeness and convexity. We provide the reader with some examples to illustrate the efficiency of our theory. Our results improve, complement, and generalize some well-known (nonsharp) estimates, as seen in the Concluding Remarks and Outlook section.
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Ahlfors, L.V.: Complex Analysis. McGraw-Hill, New York (1953)
2. Baricz, Á.: Bessel transforms and Hardy space of generalized Bessel functions. Mathematica 48(71), 127–136 (2006)
3. Baricz, Á.: Geometric properties of generalized Bessel functions. Publ. Math. (Debr.) 73(1–2), 15–178 (2008)
4. Baricz, Á., Ponnusamy, S.: Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct. 21(9), 641–653 (2010)
5. De Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985)