Analytical and geometrical approach to the generalized Bessel function

Author:

Bulboacă Teodor,Zayed Hanaa M.

Abstract

AbstractIn continuation of Zayed and Bulboacă work in (J. Inequal. Appl. 2022:158, 2022), this paper discusses the geometric characterization of the normalized form of the generalized Bessel function defined by $$\begin{aligned} \mathrm{V}_{\rho,r}(z):=z+\sum_{k=1}^{\infty} \frac{(-r)^{k}}{4^{k}(1)_{k}(\rho )_{k}}z^{k+1}, \quad z\in \mathbb{U}, \end{aligned}$$ V ρ , r ( z ) : = z + k = 1 ( r ) k 4 k ( 1 ) k ( ρ ) k z k + 1 , z U , for $\rho, r\in \mathbb{C}^{\ast}:=\mathbb{C}\setminus \{0\}$ ρ , r C : = C { 0 } . Precisely, we will use a sharp estimate for the Pochhammer symbol, that is, $\Gamma (a+n)/\Gamma (a+1)>(a+\alpha )^{n-1}$ Γ ( a + n ) / Γ ( a + 1 ) > ( a + α ) n 1 , or equivalently $(a)_{n}>a(a+\alpha )^{n-1}$ ( a ) n > a ( a + α ) n 1 , that was firstly proved by Baricz and Ponnusamy for $n\in \mathbb{N}\setminus \{1,2\}$ n N { 1 , 2 } , $a>0$ a > 0 and $\alpha \in [0,1.302775637\ldots ]$ α [ 0 , 1.302775637 ] in (Integral Transforms Spec. Funct. 21(9):641–653, 2010), and then proved in our paper by another method to improve it using the partial derivatives and the two-variable functions’ extremum technique for $n\in \mathbb{N}\setminus \{1,2\}$ n N { 1 , 2 } , $a>0$ a > 0 and $0\leq \alpha \leq \sqrt{2}$ 0 α 2 , and used to investigate the orders of starlikeness and convexity. We provide the reader with some examples to illustrate the efficiency of our theory. Our results improve, complement, and generalize some well-known (nonsharp) estimates, as seen in the Concluding Remarks and Outlook section.

Publisher

Springer Science and Business Media LLC

Reference25 articles.

1. Ahlfors, L.V.: Complex Analysis. McGraw-Hill, New York (1953)

2. Baricz, Á.: Bessel transforms and Hardy space of generalized Bessel functions. Mathematica 48(71), 127–136 (2006)

3. Baricz, Á.: Geometric properties of generalized Bessel functions. Publ. Math. (Debr.) 73(1–2), 15–178 (2008)

4. Baricz, Á., Ponnusamy, S.: Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct. 21(9), 641–653 (2010)

5. De Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3