Geometric characterization of the generalized Lommel–Wright function in the open unit disc

Author:

Zayed Hanaa M.,Bulboacă Teodor

Abstract

AbstractThe present investigation aims to examine the geometric properties of the normalized form of the combination of generalized Lommel–Wright function $\mathfrak{J}_{\lambda ,\mu}^{\nu ,m}(z):=\Gamma ^{m}(\lambda +1) \Gamma (\lambda +\mu +1)2^{2\lambda +\mu}z^{1-(\nu /2)-\lambda} \mathcal{J}_{\lambda ,\mu }^{\nu ,m}(\sqrt{z})$ J λ , μ ν , m ( z ) : = Γ m ( λ + 1 ) Γ ( λ + μ + 1 ) 2 2 λ + μ z 1 ( ν / 2 ) λ J λ , μ ν , m ( z ) , where the function $\mathcal{J}_{\lambda ,\mu}^{\nu ,m}$ J λ , μ ν , m satisfies the differential equation $\mathcal{J}_{\lambda ,\mu}^{\nu ,m}(z):=(1-2\lambda -\nu )J_{ \lambda ,\mu}^{\nu ,m}(z)+z (J_{\lambda ,\mu }^{\nu ,m}(z) )^{\prime}$ J λ , μ ν , m ( z ) : = ( 1 2 λ ν ) J λ , μ ν , m ( z ) + z ( J λ , μ ν , m ( z ) ) with $$ J_{\nu ,\lambda}^{\mu ,m}(z)= \biggl(\frac{z}{2} \biggr)^{2\lambda + \nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\Gamma ^{m} (k+\lambda +1 )\Gamma (k\mu +\nu +\lambda +1 )} \biggl(\frac{z}{ 2} \biggr)^{2k} $$ J ν , λ μ , m ( z ) = ( z 2 ) 2 λ + ν k = 0 ( 1 ) k Γ m ( k + λ + 1 ) Γ ( k μ + ν + λ + 1 ) ( z 2 ) 2 k for $\lambda \in \mathbb{C}\setminus \mathbb{Z}^{-}$ λ C Z , $\mathbb{Z}^{-}:= \{ -1,-2,-3,\ldots \}$ Z : = { 1 , 2 , 3 , } , $m\in \mathbb{N}$ m N , $\nu \in \mathbb{C}$ ν C , and $\mu \in \mathbb{N}_{0}:=\mathbb{N}\cup \{0\}$ μ N 0 : = N { 0 } . In particular, we employ a new procedure using mathematical induction, as well as an estimate for the upper and lower bounds for the gamma function inspired by Li and Chen (J. Inequal. Pure Appl. Math. 8(1):28, 2007), to evaluate the starlikeness and convexity of order α, $0\leq \alpha <1$ 0 α < 1 . Ultimately, we discuss the starlikeness and convexity of order zero for $\mathfrak{J}_{\lambda ,\mu} ^{\nu ,m}$ J λ , μ ν , m , and it turns out that they are useful to extend the range of validity for the parameter λ to $\lambda \geq 0$ λ 0 where the main concept of the proofs comes from some technical manipulations given by Mocanu (Libertas Math. 13:27–40, 1993). Our results improve, complement, and generalize some well-known (nonsharp) estimates.

Funder

Minufiya University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3