Enhancing docosahexaenoic acid production of Schizochytrium sp. by optimizing fermentation using central composite design

Author:

Ding Jun,Fu Zilin,Zhu Yingkun,He Junhao,Ma Lu,Bu Dengpan

Abstract

AbstractDocosahexaenoic acid (DHA) can improve human and animal health, particularly including anti-inflammatory, antioxidant, anticancer, neurological, and visual functions. Schizochytrium sp. is a marine heterotrophic protist producing oil with high DHA content, which is widely used in animal and food production. However, different fermentation conditions have intensive impacts on the growth and DHA content of Schizochytrium sp. Thus, this study aimed to enhance the DHA yield and concentration of Schizochytrium sp. I-F-9 by optimizing the fermentation medium. First, a single-factor design was conducted to select a target carbon and nitrogen source from several generic sources (glucose, sucrose, glycerol, maltose, corn syrup, yeast extract, urea, peptone, and ammonium sulfate). The Plackett–Burman design and the central composite design (CCD) were utilized to optimize the fermentation mediums. Schizochytrium sp. in 50-mL fermentation broth was cultured in a 250 mL shake flask at 28 °C and 200 rpm for 120 h before collecting the cell pellet. Subsequently, the cell walls were destroyed with hydrochloric acid to extract the fatty acid using n-hexane. The DHA content was detected by gas chromatography. The single-factor test indicated that glucose and peptone, respectively, significantly improved the DHA content of Schizochytrium sp. compared to the other carbon and nitrogen sources. Glucose, sodium glutamate, and sea crystal were the key factors affecting DHA production in the Plackett–Burman test (P = 0.0247). The CCD result showed that DHA production was elevated by 34.73% compared with the initial yield (from 6.18 ± 0.063 to 8.33 ± 0.052 g/L). Therefore, the results of this study demonstrated an efficient strategy to increase the yield and content of DHA of Schizochytrium sp.

Funder

National Key Research and Development Program of China

the Key Research and Development Program of the Ningxia Hui Autonomous Region

the Scientific Research Project for Major Achievements of the Agricultural Science and Technology Innovation Pro-gram

Beijing Dairy Industry Innovation Team

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3