Sharp loss: a new loss function for radiotherapy dose prediction based on fully convolutional networks

Author:

Bai XueORCID,Zhang Jie,Wang Binbing,Wang Shengye,Xiang Yida,Hou Qing

Abstract

Abstract Background Neural-network methods have been widely used for the prediction of dose distributions in radiotherapy. However, the prediction accuracy of existing methods may be degraded by the problem of dose imbalance. In this work, a new loss function is proposed to alleviate the dose imbalance and achieve more accurate prediction results. The U-Net architecture was employed to build a prediction model. Our study involved a total of 110 patients with left-breast cancer, who were previously treated by volumetric-modulated arc radiotherapy. The patient dataset was divided into training and test subsets of 100 and 10 cases, respectively. We proposed a novel ‘sharp loss’ function, and a parameter γ was used to adjust the loss properties. The mean square error (MSE) loss and the sharp loss with different γ values were tested and compared using the Wilcoxon signed-rank test. Results The sharp loss achieved superior dose prediction results compared to those of the MSE loss. The best performance with the MSE loss and the sharp loss was obtained when the parameter γ was set to 100. Specifically, the mean absolute difference values for the planning target volume were 318.87 ± 30.23 for the MSE loss versus 144.15 ± 16.27 for the sharp loss with γ = 100 (p < 0.05). The corresponding values for the ipsilateral lung, the heart, the contralateral lung, and the spinal cord were 278.99 ± 51.68 versus 198.75 ± 61.38 (p < 0.05), 216.99 ± 44.13 versus 144.86 ± 43.98 (p < 0.05), 125.96 ± 66.76 versus 111.86 ± 47.19 (p > 0.05), and 194.30 ± 14.51 versus 168.58 ± 25.97 (p < 0.05), respectively. Conclusions The sharp loss function could significantly improve the accuracy of radiotherapy dose prediction.

Funder

National Natural Science Foundation of China

Zhejiang Province Public Welfare Technology Application Research Project

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3