Approach and assessment of automated stereotactic radiotherapy planning for early stage non-small-cell lung cancer

Author:

Bai Xue,Shan Guoping,Chen Ming,Wang BinbingORCID

Abstract

Abstract Background Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) are standard physical technologies of stereotactic body radiotherapy (SBRT) that are used for patients with non-small-cell lung cancer (NSCLC). The treatment plan quality depends on the experience of the planner and is limited by planning time. An automated planning process can save time and ensure a high-quality plan. This study aimed to introduce and demonstrate an automated planning procedure for SBRT for patients with NSCLC based on machine-learning algorithms. The automated planning was conducted in two steps: (1) determining patient-specific optimized beam orientations; (2) calculating the organs at risk (OAR) dose achievable for a given patient and setting these dosimetric parameters as optimization objectives. A model was developed using data of historical expertise plans based on support vector regression. The study cohort comprised patients with NSCLC who were treated using SBRT. A training cohort (N = 125) was used to calculate the beam orientations and dosimetric parameters for the lung as functions of the geometrical feature of each case. These plan–geometry relationships were used in a validation cohort (N = 30) to automatically establish the SBRT plan. The automatically generated plans were compared with clinical plans established by an experienced planner. Results All 30 automated plans (100%) fulfilled the dose criteria for OARs and planning target volume (PTV) coverage, and were deemed acceptable according to evaluation by experienced radiation oncologists. An automated plan increased the mean maximum dose for ribs (31.6 ± 19.9 Gy vs. 36.6 ± 18.1 Gy, P < 0.05). The minimum, maximum, and mean dose; homogeneity index; conformation index to PTV; doses to other organs; and the total monitor units showed no significant differences between manual plans established by experts and automated plans (P > 0.05). The hands-on planning time was reduced from 40–60 min to 10–15 min. Conclusion An automated planning method using machine learning was proposed for NSCLC SBRT. Validation results showed that the proposed method decreased planning time without compromising plan quality. Plans generated by this method were acceptable for clinical use.

Funder

National Key Research and Development Program of China

Zhejiang Provincial Natural Science Foundation of China

Medical Science and Technology Program of Zhejiang Province

the Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3