Abstract
Abstract
Background
Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) are standard physical technologies of stereotactic body radiotherapy (SBRT) that are used for patients with non-small-cell lung cancer (NSCLC). The treatment plan quality depends on the experience of the planner and is limited by planning time. An automated planning process can save time and ensure a high-quality plan. This study aimed to introduce and demonstrate an automated planning procedure for SBRT for patients with NSCLC based on machine-learning algorithms. The automated planning was conducted in two steps: (1) determining patient-specific optimized beam orientations; (2) calculating the organs at risk (OAR) dose achievable for a given patient and setting these dosimetric parameters as optimization objectives. A model was developed using data of historical expertise plans based on support vector regression. The study cohort comprised patients with NSCLC who were treated using SBRT. A training cohort (N = 125) was used to calculate the beam orientations and dosimetric parameters for the lung as functions of the geometrical feature of each case. These plan–geometry relationships were used in a validation cohort (N = 30) to automatically establish the SBRT plan. The automatically generated plans were compared with clinical plans established by an experienced planner.
Results
All 30 automated plans (100%) fulfilled the dose criteria for OARs and planning target volume (PTV) coverage, and were deemed acceptable according to evaluation by experienced radiation oncologists. An automated plan increased the mean maximum dose for ribs (31.6 ± 19.9 Gy vs. 36.6 ± 18.1 Gy, P < 0.05). The minimum, maximum, and mean dose; homogeneity index; conformation index to PTV; doses to other organs; and the total monitor units showed no significant differences between manual plans established by experts and automated plans (P > 0.05). The hands-on planning time was reduced from 40–60 min to 10–15 min.
Conclusion
An automated planning method using machine learning was proposed for NSCLC SBRT. Validation results showed that the proposed method decreased planning time without compromising plan quality. Plans generated by this method were acceptable for clinical use.
Funder
National Key Research and Development Program of China
Zhejiang Provincial Natural Science Foundation of China
Medical Science and Technology Program of Zhejiang Province
the Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献