Radiation pneumonia predictive model for radiotherapy in esophageal carcinoma patients

Author:

Sheng Liming,Zhuang Lei,Yang Jing,Zhang Danhong,Chen Ying,Zhang Jie,Wang Shengye,Shan Guoping,Du Xianghui,Bai Xue

Abstract

Abstract Background The machine learning models with dose factors and the deep learning models with dose distribution matrix have been used to building lung toxics models for radiotherapy and achieve promising results. However, few studies have integrated clinical features into deep learning models. This study aimed to explore the role of three-dimension dose distribution and clinical features in predicting radiation pneumonitis (RP) in esophageal cancer patients after radiotherapy and designed a new hybrid deep learning network to predict the incidence of RP. Methods A total of 105 esophageal cancer patients previously treated with radiotherapy were enrolled in this study. The three-dimension (3D) dose distributions within the lung were extracted from the treatment planning system, converted into 3D matrixes and used as inputs to predict RP with ResNet. In total, 15 clinical factors were normalized and converted into one-dimension (1D) matrixes. A new prediction model (HybridNet) was then built based on a hybrid deep learning network, which combined 3D ResNet18 and 1D convolution layers. Machine learning-based prediction models, which use the traditional dosiomic factors with and without the clinical factors as inputs, were also constructed and their predictive performance compared with that of HybridNet using tenfold cross validation. Accuracy and area under the receiver operator characteristic curve (AUC) were used to evaluate the model effect. DeLong test was used to compare the prediction results of the models. Results The deep learning-based model achieved superior prediction results compared with machine learning-based models. ResNet performed best in the group that only considered dose factors (accuracy, 0.78 ± 0.05; AUC, 0.82 ± 0.25), whereas HybridNet performed best in the group that considered both dose factors and clinical factors (accuracy, 0.85 ± 0.13; AUC, 0.91 ± 0.09). HybridNet had higher accuracy than that of Resnet (p = 0.009). Conclusion Based on prediction results, the proposed HybridNet model could predict RP in esophageal cancer patients after radiotherapy with significantly higher accuracy, suggesting its potential as a useful tool for clinical decision-making. This study demonstrated that the information in dose distribution is worth further exploration, and combining multiple types of features contributes to predict radiotherapy response.

Funder

Beijing Bethune Charitable Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3