Effects of free-air CO2 enrichment (FACE) and nitrogen (N) supply on N uptake and utilization of indica and japonica cultivars (Oryza sativa L.)

Author:

Jiang Qian,Zhang Jishuang,Xu Xi,Liu Gang,Zhu JianguoORCID

Abstract

Abstract Background Increasing atmospheric [CO2] can increase photosynthesis and promote plant growth, consequently influencing nitrogen (N) cycling. Yet, there is no systematic information on the N response among different organs of japonica and indica rice genotypes to elevated [CO2] as affected by N application. To investigate the impacts of elevated [CO2] and N fertilization on N uptake and utilization of different genotypic rice (Oryza sativa L.) during grain filling, a free-air CO2 enrichment (FACE) experiment with indica cv. Liangyou 084 (IIY084) and japonica cv. Wuyunjing 23 (WYJ23) was conducted in Eastern China. Crops were exposed to ambient [CO2] and elevated [CO2] (200 μmol mol−1 above ambient) at two levels of N: control (0N) and 22.5 g N m−2 (normal N, NN), and they were sampled at 82 days after transplanting (DAT), 99 DAT, and maturity, respectively. Results Under FACE, significant declines of N concentration in all tissues and the whole plants were observed with the greater decrease in leaves and stems at three stages. Positive responses of N use efficiency (NUE) to elevated [CO2] were recorded over the study period. The total N accumulation remained unchanged, while a large amount of N was partitioned to panicles at the expense of leaves and stems. As compared to WYJ23, greater N transportation from roots to aboveground, especially the panicles, was observed on IIY084 accompanied by higher panicle biomass (82 DAT and 99 DAT), N concentrations (maturity), and greater NUE for leaves through the study season. Across all [CO2] and cultivars, N fertilization increased N partitioning to leaves and stems while decreasing that to panicles. Additionally, N supply decreased NUE while stimulating N concentrations and N amounts of rice plants. Among all treatments, IIY084 had the highest N accumulation and allocation in panicles under elevated [CO2] in combination with N fertilizer at maturity. Conclusion Data from this study were helpful for understanding the temporal N uptake and utilization of different rice genotypes as affected by N availability and suggest that IIY084 promises a considerable prospect for its grain yield and quality under future elevated atmospheric [CO2].

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modelling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3