Effects of Azotobacter and Carbon Dioxide Concentrations on the Growth and Yield of Rice Plants Grown in Two Paddy Soils

Author:

Chen Syuan-Lu1,Huang Cheng-Hua12ORCID

Affiliation:

1. Department of Soil and Environmental Sciences, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan

2. Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan

Abstract

Rice is an important staple crop influenced by rising CO2 and related climate change, but it is not well-known how N-fixing Azotobacter affects rice growth and yield under different CO2 concentrations. This study aimed to determine the effects of Azotobacter strains on the growth and yield of rice plants grown in two paddy soils under varying CO2 conditions. Rice plants inoculated with three Azotobacter strains were grown in a conventional rice soil (Dali) and an organic rice soil (Houlong) under 500 or 1000 ppm CO2. These three Azotobacter strains significantly increased the harvest index of rice plants grown in Dali soil under 1000 ppm CO2, but they did not significantly increase the harvest index for rice plants grown in Houlong soil under elevated CO2. Interestingly, only A. beijerinckii CHB 461 significantly promoted the thousand-grain weight of rice plants grown in both Dali and Houlong soils under elevated CO2. Dali soil had a high level of soil organic matter, exchangeable Ca and Mg, and available Cu and Zn, probably resulting in a better response of the rice plants to Azotobacter inoculation under elevated CO2. In conclusion, in the application of Azotobacter to promote rice growth and yield under future rising CO2 conditions, the soil properties and characteristics of Azotobacter strains may need to be considered.

Funder

Ministry of Education, Taiwan, R.O.C.

Ministry of Science and Technology, Taiwan, R.O.C.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3