Species-Dependent Response of Brassica chinensis L. to Elevated CO2 Gradients Influences Uptake and Utilization of Soil Nitrogen, Phosphorus and Potassium

Author:

Shi Songmei12,Wang Xinju1,Li Huakang1,Song Jiajun1,He Xinhua234ORCID,Yang Zhengan1

Affiliation:

1. Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China

2. Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400716, China

3. School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia

4. Department of Land, Air and Water Resources, University of California at Davis, Davis, CA 95616, USA

Abstract

Employing elevated CO2 (eCO2), similar to increasing atmospheric CO2 in a greenhouse, is a common practice used to increase vegetable crop yields. However, the responses of nutrient availability, nutrient uptake and use efficiency in leafy vegetables to eCO2 remain largely unknown. The plant biomass production, nitrogen (N), phosphorus (P) and potassium (K) contents, nutrient uptake, and soil enzymatic activities of three Brassica chinensis varieties of ‘Longpangqing’, ‘Heimeiren’ and ‘Qingjiangbai’ were thus assessed under ambient CO2 (C0, 420/470 ppm, day/night) and eCO2 (C1, C0 + 33.3%C0; C2, C0 + 66.7%C0; and C3, C0 + 100%C0) for 4 months. Biomass production was significantly enhanced in these three tested B. chinensis varieties along with eCO2 gradients, with the highest biomass production under C3. Moreover, the eCO2 significantly increased plant N and K uptake, P and K use efficiency, soil saccharase, urease, and phosphatase activities, but decreased plant P content, soil available N and K, and catalase activity. Under eCO2, ‘Qingjiangbai’ exhibited higher biomass production and P and K uptake, without a decrease in soil available N and P. Consequently, more external fertilizer supplementation (especially N, followed by K) is required to maintain or promote Brassica chinensis yield under eCO2, while these management strategies must be carefully considered for different crop varieties.

Funder

National Natural Science Foundation of China

Yunnan Fundamental Research Projects

Key Science and Technology Special Projects of Yunnan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3