Author:
Zhu Keming,Li Nannan,Zheng Xiangfeng,Sarwar Rehman,Li Yulong,Cao Jun,Wang Zheng,Tan Xiaoli
Abstract
Abstract
Background
Chlorophyll is a very important pigment involved in photosynthesis, while plant acyl-CoA biosynthesis is derived from plastid-localized fatty acids (FAs). Until now, the regulation of the acyl-CoA pathway for chlorophyll biosynthesis is still unknown.
Results
Here, we identified a long-chain acyl-CoA synthetase (LACS) gene BnLACS9 from Brassica napus. BnLACS9 complemented a LACS-deficient yeast strain YB525, which indicated that BnLACS9 has the LACS function. BnLACS9 was localized in the chloroplast envelope membrane, while mainly expressed in young leaves and flowers. Overexpression of BnLACS9 in Nicotiana benthamiana resulted in an increase in total CoA and MGDG content. In B. napus with overexpression of BnLACS9, the number of chloroplast grana lamellae and the chlorophyll content, as well as the MGDG and DGDG contents, increased compared to wild type. The net photosynthetic rate, dry weight of the entire plant and oil content of seeds increased significantly, accompanied by an increase in chlorophyll content. Transcriptome analysis revealed that overexpression of BnLACS9 improved the pathway of acyl-CoA biosynthesis and further improved the enzymes in the glycolipid synthesis pathway, while acyl-CoA was the substrate for glycolipid synthesis. The increased glycolipids, especially MGDG and DGDG, accelerated the formation of the chloroplast grana lamellae, which increased the number of chloroplast thylakoid grana lamella and further lead to increased chlorophyll content.
Conclusions
In the present study, we demonstrated that BnLACS9 played a crucial role in glycolipids and chlorophyll biosynthesis in B. napus. The results also provide a new direction and theoretical basis for the improvement of the agronomic traits of plants.
Funder
National Natural Science Foundation of China
Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund Project
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献