Overexpression the BnLACS9 could increase the chlorophyll and oil content in Brassica napus

Author:

Zhu Keming,Li Nannan,Zheng Xiangfeng,Sarwar Rehman,Li Yulong,Cao Jun,Wang Zheng,Tan Xiaoli

Abstract

Abstract Background Chlorophyll is a very important pigment involved in photosynthesis, while plant acyl-CoA biosynthesis is derived from plastid-localized fatty acids (FAs). Until now, the regulation of the acyl-CoA pathway for chlorophyll biosynthesis is still unknown. Results Here, we identified a long-chain acyl-CoA synthetase (LACS) gene BnLACS9 from Brassica napus. BnLACS9 complemented a LACS-deficient yeast strain YB525, which indicated that BnLACS9 has the LACS function. BnLACS9 was localized in the chloroplast envelope membrane, while mainly expressed in young leaves and flowers. Overexpression of BnLACS9 in Nicotiana benthamiana resulted in an increase in total CoA and MGDG content. In B. napus with overexpression of BnLACS9, the number of chloroplast grana lamellae and the chlorophyll content, as well as the MGDG and DGDG contents, increased compared to wild type. The net photosynthetic rate, dry weight of the entire plant and oil content of seeds increased significantly, accompanied by an increase in chlorophyll content. Transcriptome analysis revealed that overexpression of BnLACS9 improved the pathway of acyl-CoA biosynthesis and further improved the enzymes in the glycolipid synthesis pathway, while acyl-CoA was the substrate for glycolipid synthesis. The increased glycolipids, especially MGDG and DGDG, accelerated the formation of the chloroplast grana lamellae, which increased the number of chloroplast thylakoid grana lamella and further lead to increased chlorophyll content. Conclusions In the present study, we demonstrated that BnLACS9 played a crucial role in glycolipids and chlorophyll biosynthesis in B. napus. The results also provide a new direction and theoretical basis for the improvement of the agronomic traits of plants.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund Project

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3