Arabidopsis Contains Nine Long-Chain Acyl-Coenzyme A Synthetase Genes That Participate in Fatty Acid and Glycerolipid Metabolism

Author:

Shockey Jay M.1,Fulda Martin S.12,Browse John A.1

Affiliation:

1. Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164–6340 (J.M.S., M.S.F., J.A.B.); and

2. Universität Hamburg, Institut für Allgemeine Botanik, Ohnhorststrasse 18 22609, Hamburg, Germany (M.S.F.)

Abstract

Abstract Long-chain acyl-coenzyme A (CoA) synthetases (LACSs) activate free fatty acids to acyl-CoA thioesters and as such play critical roles in fatty acid metabolism. This important class of enzymes factors prominently in several fatty acid-derived metabolic pathways, including phospholipid, triacylglycerol, and jasmonate biosynthesis and fatty acid β-oxidation. In an effort to better understand the factors that control fatty acid metabolism in oilseeds, we have sought to identify and characterize genes that encode LACSs in Arabidopsis. Nine cDNAs were identified, cloned, and tested for their ability to complement a LACS-deficient strain of yeast (Saccharomyces cerevisiae). Seven of the nine successfully restored growth, whereas two cDNAs encoding putative peroxisomal isoforms did not. Lysates from yeast cells overexpressing each of the nine cDNAs were active in LACS enzyme assays using oleic acid as a substrate. The substrate specificities of the enzymes were determined after overexpression in LACS-deficient Escherichia coli. Most of the LACS enzymes displayed highest levels of activity with the fatty acids that make up the common structural and storage lipids in Arabidopsis tissues. Analysis of the tissue-specific expression profiles for these genes revealed one flower-specific isoform, whereas all others were expressed in various tissues throughout the plant. These nine cDNAs are thought to constitute the entire LACS family in Arabidopsis, and as such, will serve as powerful tools in the study of acyl-CoA metabolism in oilseeds.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3