Affiliation:
1. Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
2. School of Agriculture, Ludong University, Yantai 264001, China
3. College of Life Sciences, Shandong Normal University, Jinan 250300, China
4. College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
Abstract
Long-chain acyl-CoA synthetases (LACSs) are essential enzymes that activate free fatty acids to fatty acyl-CoA thioesters, playing key roles in fatty acid (FA) catabolism, lipid synthesis and storage, epidermal wax synthesis, and stress tolerance. Despite their importance, comprehensive information about LACS genes in maize, a primary food crop, remains scarce. In the present work, eleven maize LACS genes were identified and mapped across five chromosomes. Three pairs of segmentally duplicated genes were detected in the maize LACS gene family, which underwent significant purifying selection (Ka/Ks < 1). Subsequently, phylogenetic analysis indicated that ZmLACS genes were divided into four subclasses, as supported by highly conserved motifs and gene structures. On the basis of the PlantCARE database, analysis of the ZmLACS promoter regions revealed various cis-regulatory elements related to tissue-specific expression, hormonal regulation, and abiotic stress response. RT-qPCR analysis showed that ZmLACS genes exhibit tissue-specific expression patterns and respond to diverse abiotic stresses including drought and salt, as well as phytohormone abscisic acid. Furthermore, using the STRING database, several proteins involved in fatty acid and complex lipid synthesis were identified to be the potential interaction partners of ZmLACS proteins, which was also confirmed by the yeast two-hybrid (Y2H) assay, enhancing our understanding of wax biosynthesis and regulatory mechanisms in response to abiotic stresses in maize. These findings provide a comprehensive understanding of ZmLACS genes and offer a theoretical foundation for future research on the biological functions of LACS genes in maize environmental adaptability.
Funder
Seed-Industrialized Development Program in Shandong Province
Shandong Province Saline Alkali Land Agricultural Technology System
Natural Science Foundation of Shandong Province, China
National Key R&D Program of China
Key Technology Research and Development Program of Shandong