Determination of superior Pistacia chinensis accession with high-quality seed oil and biodiesel production and revelation of LEC1/WRI1-mediated high oil accumulative mechanism for better developing woody biodiesel

Author:

Chen Feng1,Lin Weijun2,Li Wei1,Hu Jinhe1,Li Zhi1,Shi Lingling1,Zhang Zhixiang1,Xiu Yu1,Lin Shanzhi1

Affiliation:

1. Beijing Forestry University

2. Chinese Academy of Sciences

Abstract

Abstract Background: Based on our previous studied on different provenances of Pistacia chinensis, some accessions with high quality and quantity of seed oils has emerged as novel source of biodiesel. To better develop P. chinensis seed oils as woody biodiesel, a concurrent exploration of oil content, FA profile, biodiesel yield, fuel properties and 3D prediction model construction was conducted on the seeds from 5 plus germplasms to determine superior genotype for ideal biodiesel production. Another vital challenge is to unravel mechanism that govern the differences in oil content and FA profile of P. chinensis seeds across different accessions. FA synthesis and oil accumulation of oil plants are known to be highly controlled by the transcription factors. An integrated analysis of our recent transcriptome data, qRT-PCR detection and functional identification was performed as an attempt to highlight LEC1/WRI1-mediated transcription regulatory mechanism for high-quality oil accumulation in P. chinensis seeds. Results: To select ideal germplasm and unravel high oil accumulative mechanism for developing P. chinensis seed oils as biodiesel, five plus trees (accessionPC-BJ/PC-AH/PC-SX/PC-HN/PC-HB) with high-yield seeds were selected to assess the variabilities in weight, oil content, FA profile, biodiesel yield and fuel property, and 3D model construction for fuel property prediction, revealing a variation in the levels of seed oil (50.76-60.88%), monounsaturated FA (42.80-70.72%) and polyunsaturated FA (18.78-43.35%), and biodiesel yield (84.98-98.15%) across different accessions. PC-HN had a maximum values of seed weight (26.23 mg), oil (60.95%) and biodiesel yield (98.15%), and ideal proportions of C18:1 (69.94%), C18:2 (17.65%) and C18:3 (1.13%), implying that seed oils of accession PC-HN was the most suitable for ideal biodiesel production. To highlight molecular mechanism that govern such differences in oil content and FA profile of different accessions, a combination of our recent transcriptome data, qRT-PCR detection and protein interaction assay was performed to identify a key role of LEC1/WRI1-mediated transcription regulatory network in high oil accumulation of P. chinensis seeds from different accessions. Notably, overexpression of PcWRI1 or PcLEC1 from P. chinensis seeds in Arabidopsis could facilitate seed development and upregulate several genes relevant for carbon allocation (plastidic glycolysis and acetyl-CoA generation), FA biosynthesis, TAG assembly and oil storage, leading to an increase in seed oil content and monounsaturated FA amount, destined for biodiesel property improvement. Our findings may present strategies for developing P. chinensis seed oils as biodiesel feedstock and bioengineering its high oil accumulation. Conclusions: This is the first report on the cross-accessions assessments of P. chinensis seed oils and novel 3D modal construction of biodiesel property prediction to determine ideal accession for high-quality biodiesel production, and a combination of PcWRI1 and PcLEC1 overexpression, morphological assay, oil accumulation and qRT-PCR detection was conducted to unravel a role of LEC1/WRI1-mediated regulatory network for oil accumulation in P. chinensis seeds, and to highlight the potential application of PcWRI1 or PcLEC1 for increasing oil production. Our finding may provide new strategies for developing biodiesel resource and molecular breeding.

Publisher

Research Square Platform LLC

Reference80 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3