Author:
Guo Yongxin,Zhao Yuru,Gao Yuan,Wang Gang,Zhao Yixin,Zhang Jiejing,Li Yanli,Wang Xiqing,Liu Juan,Chen Guang
Abstract
AbstractStraw biorefinery offers economical and sustainable production of chemicals. The merits of cell immobilization technology have become the key technology to meet d-lactic acid production from non- detoxified corn stover. In this paper, Low acyl gellan gum (LA-GAGR) was employed first time for Lactobacillus bulgaricus T15 immobilization and applied in d-lactic acid (D-LA) production from non-detoxified corn stover hydrolysate. Compared with the conventional calcium alginate (E404), LA-GAGR has a hencky stress of 82.09 kPa and excellent tolerance to 5-hydroxymethylfurfural (5-HMF), ferulic acid (FA), and vanillin. These features make LA-GAGR immobilized T15 work for 50 days via cell-recycle fermentation with D-LA yield of 2.77 ± 0.27 g/L h, while E404 immobilized T15 can only work for 30 days. The production of D-LA from non-detoxified corn stover hydrolysate with LA-GAGR immobilized T15 was also higher than that of free T15 fermentation and E404 immobilized T15 fermentation. In conclusion, LA-GAGR is an excellent cell immobilization material with great potential for industrial application in straw biorefinery industry.
Graphical Abstract
Funder
Key R&D plan of Jilin Province
Natural Science Foundation of Jilin Province
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology
Reference43 articles.
1. Aso Y, Tsubaki M, Bui HDL, Murakami R, Nagata K, Okano H, Ngo Thi PD, Ohara H. Continuous production of d-lactic acid from cellobiose in cell recycle fermentation using beta-glucosidase-displaying Escherichia coli. J Biosci Bioeng. 2019;127:441–6.
2. Brüster B, Adjoua Y-O, Dieden R, Grysan P, Federico CE, Berthé V, Addiego F. Plasticization of polylactide with myrcene and limonene as bio-based plasticizers: conventional vs. Reactive Extrusion Polymers. 2019;11:1363.
3. Zaini NABM, Chatzifragkou A, Charalampopoulos D. Microbial production of d-lactic acid from dried distiller’s grains with solubles. Eng Life Sci. 2019;19:21–30.
4. Zhang F, Liu J, Han X, Gao C, Ma C, Tao F, Xu P. Kinetic characteristics of long-term repeated fed-batch (LtRFb) l-lactic acid fermentation by a Bacillus coagulans strain. Eng Life Sci. 2020;20:562–70.
5. Juturu V, Wu JC. Microbial production of lactic acid: the latest development. Crit Rev Biotechnol. 2016;36:967–77.