Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development

Author:

Bandara HMHN,Yau JYY,Watt RM,Jin LJ,Samaranayake LP

Abstract

Abstract Background Elucidation of the communal behavior of microbes in mixed species biofilms may have a major impact on understanding infectious diseases and for the therapeutics. Although, the structure and the properties of monospecies biofilms and their role in disease have been extensively studied during the last decade, the interactions within mixed biofilms consisting of bacteria and fungi such as Candida spp. have not been illustrated in depth. Hence, the aim of this study was to evaluate the interspecies interactions of Pseudomonas aeruginosa and six different species of Candida comprising C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. dubliniensis in dual species biofilm development. Results A significant reduction in colony forming units (CFU) of C. parapsilosis (90 min), C. albicans and C. tropicalis (90 min, 24 h and 48 h), C. dubliniensis and C. glabrata, (24 h and 48 h) was noted when co-cultured with P. aeruginosa in comparison to their monospecies counterparts (P < 0.05). A simultaneous significant reduction in P. aeruginosa numbers grown with C. albicans (90 min and 48 h), C. krusei (90 min, 24 h and 48 h),C. glabrata, (24 h and 48 h), and an elevation of P. aeruginosa numbers co-cultured with C. tropicalis (48 h) was noted (P < 0.05). When data from all Candida spp. and P. aeruginosa were pooled, highly significant mutual inhibition of biofilm formation was noted (Candida P < 0.001, P. aeruginosa P < 0.01). Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) analyses confirmed scanty architecture in dual species biofilm in spite of dense colonization in monospecies counterparts. Conclusions P. aeruginosa and Candida in a dual species environment mutually suppress biofilm development, both quantitatively and qualitatively. These findings provide a foundation to clarify the molecular basis of bacterial-fungal interactions, and to understand the pathobiology of mixed bacterial-fungal infections.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3