In vitro analysis of interactions between Pseudomonas aeruginosa and Candida albicans treated with silver sulfadiazine in wound infections

Author:

Kamath Preetha1,Paul Suchismita1,Valdes Jose1,Gil Joel1,Solis Michael1,Higa Alex1ORCID,Davis Stephen C1

Affiliation:

1. Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery , RMSB Room 2089 1600 NW 10 Avenue, Miami, FL 33136 , USA

Abstract

Abstract Background Microorganisms tend to rely on close relationships with other species to survive. Consequently, biofilms formed by interactions of different species have been shown to delay the wound healing process. Studies suggest these mixed-population infections contribute to the development of drug resistance and inhibition of host immune response. Silver sulfadiazine (SSD) has been shown to effectively decrease the risk of infection in an open wound. Typically, these are bacterial wound infections; however, the role of fungal species needs further attention. Objectives The purpose of this in vitro study was to determine the effect of SSD on interactions between Pseudomonas aeruginosa 09-009 (PA1) or P. aeruginosa 09-010 (PA2) and Candida albicans ATTC 64550 (CA). Methods A mixture of 4 mL of tryptic soy broth (TSB) and 100 µL of CA and/or PA1 or PA2 (∼106 log cfu/mL) inoculums were deposited into either wells or vials. The wells or vials were then sonicated (50 W for 10 s) to separate microorganisms attached to the walls. After incubation, cell counts were performed at 24 and 48 h for each microorganism using specific media. Results Our results show that without SSD treatment, P. aeruginosa exhibits an inhibitory effect on C. albicans. Treatment with SSD demonstrated significant reduction of P. aeruginosa; however, C. albicans persisted. This experiment demonstrates that SSD was effective in reducing the bioburden of both P. aeruginosa strains after 24 and 48 h; however, it was not as effective in reducing C. albicans. Conclusions The data suggest that for polymicrobial mixed infections containing Pseudomonas spp. and C. albicans, treatment with SSD may be beneficial but does not provide adequate microorganism eradication. As such, added treatments that provide coverage for Candida infection are necessary. Additional in vivo studies are needed to obtain a better understanding of the complex interactions between these organisms.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3