Metabolites produced by probiotic Lactobacilli rapidly increase glucose uptake by Caco-2 cells

Author:

Rooj Arun K,Kimura Yasuhiro,Buddington Randal K

Abstract

Abstract Background Although probiotic bacteria and their metabolites alter enterocyte gene expression, rapid, non-genomic responses have not been examined. The present study measured accumulation of tracer (2 μM) glucose by Caco-2 cells after exposure for 10 min or less to a chemically defined medium (CDM) with different monosaccharides before and after anaerobic culture of probiotic Lactobacilli. Results Growth of L. acidophilus was supported by CDM with 110 mM glucose, fructose, and mannose, but not with arabinose, ribose, and xylose or the sugar-free CDM. Glucose accumulation was reduced when Caco-2 cells were exposed for 10 min to sterile CDM with glucose (by 92%), mannose (by 90%), fructose (by 55%), and ribose (by 16%), but not with arabinose and xylose. Exposure of Caco-2 cells for 10 min to bacteria-free supernatants prepared after exponential (48 h) and stationary (72 h) growth phases of L. acidophilus cultured in CDM with 110 mM fructose increased glucose accumulation by 83% and 45%, respectively; exposure to a suspension of the bacteria had no effect. The increase in glucose accumulation was diminished by heat-denaturing the supernatant, indicating the response of Caco-2 cells is triggered by as yet unknown heat labile bacterial metabolites, not by a reduction in CDM components that decrease glucose uptake. Supernatants prepared after anaerobic culture of L. gasseri, L. amylovorus, L. gallinarum, and L. johnsonii in the CDM with fructose increased glucose accumulation by 83%, 32%, 27%, and 14%, respectively. Conclusion The rapid, non-genomic upregulation of SGLT1 by bacterial metabolites is a heretofore unrecognized interaction between probiotics and the intestinal epithelium.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3