Rapid activation of Na+/H+exchange by EPEC is PKC mediated

Author:

Hodges Kim,Gill Ravinder,Ramaswamy K.,Dudeja Pradeep K.,Hecht Gail

Abstract

Enteropathogenic Escherichia coli (EPEC) increases sodium/hydrogen exchanger 2 (NHE2)-mediated sodium uptake by intestinal epithelial cells in a type III secretion-dependent manner. However, the mechanism(s) underlying these changes are not known. This study examines the role of a number of known secreted effector molecules and bacterial adhesins as well as the signaling pathways involved in this process. Deletion of the bacterial adhesins Tir and intimin had no effect on the increase in sodium/hydrogen exchanger (NHE) activity promoted by EPEC infection; however, there was a significant decrease upon deletion of the bundle-forming pili. Bacterial supernatant also failed to alter NHE activity, suggesting that direct interaction with bacteria is necessary. Analysis of the signal transduction cascades responsible for the increased NHE2 activity during EPEC infection showed that PLC increased Ca2+, as well as PKCα and PKCε were involved in increasing NHE activity. The activation of PKCε by EPEC has not been previously described nor has its role in regulating NHE2 activity. Because EPEC markedly increases NHE2 activity, this pathogen provides an exceptional opportunity to improve our understanding of this less-characterized NHE isoform.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physiology of Gut Water Balance and Pathomechanics of Diarrhea;Production Diseases in Farm Animals;2024

2. Nedd4-2–dependent Ubiquitination Potentiates the Inhibition of Human NHE3 by Cholera Toxin and Enteropathogenic Escherichia coli;Cellular and Molecular Gastroenterology and Hepatology;2022

3. The Myriad Ways Enteropathogenic Escherichia coli (EPEC) Alters Tight Junctions;Tight Junctions;2022

4. Escherichia coli;Foodborne Infections and Intoxications;2021

5. Na+/H+ Exchangers in Epithelia;Studies of Epithelial Transporters and Ion Channels;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3