COVID term: a bilingual terminology for COVID-19

Author:

Ma Hetong,Shen Liu,Sun Haixia,Xu Zidu,Hou Li,Wu Sizhu,Fang An,Li Jiao,Qian QingORCID

Abstract

Abstract Background The coronavirus disease (COVID-19), a pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown its destructiveness with more than one million confirmed cases and dozens of thousands of death, which is highly contagious and still spreading globally. World-wide studies have been conducted aiming to understand the COVID-19 mechanism, transmission, clinical features, etc. A cross-language terminology of COVID-19 is essential for improving knowledge sharing and scientific discovery dissemination. Methods We developed a bilingual terminology of COVID-19 named COVID Term with mapping Chinese and English terms. The terminology was constructed as follows: (1) Classification schema design; (2) Concept representation model building; (3) Term source selection and term extraction; (4) Hierarchical structure construction; (5) Quality control (6) Web service. We built open access for the terminology, providing search, browse, and download services. Results The proposed COVID Term include 10 categories: disease, anatomic site, clinical manifestation, demographic and socioeconomic characteristics, living organism, qualifiers, psychological assistance, medical equipment, instruments and materials, epidemic prevention and control, diagnosis and treatment technique respectively. In total, COVID Terms covered 464 concepts with 724 Chinese terms and 887 English terms. All terms are openly available online (COVID Term URL: http://covidterm.imicams.ac.cn). Conclusions COVID Term is a bilingual terminology focused on COVID-19, the epidemic pneumonia with a high risk of infection around the world. It will provide updated bilingual terms of the disease to help health providers and medical professionals retrieve and exchange information and knowledge in multiple languages. COVID Term was released in machine-readable formats (e.g., XML and JSON), which would contribute to the information retrieval, machine translation and advanced intelligent techniques application.

Funder

National Key Research and Development Program of China

Chinese Academy of Medical Sciences

National Population Health Scientific Data Center

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3