Linguistic repercussions of COVID-19: A corpus study on four languages

Author:

Cartier Emmanuel1,Onysko Alexander2,Winter-Froemel Esme3,Zenner Eline4,Andersen Gisle5,Hilberink-Schulpen Béryl6,Nederstigt Ulrike6,Peterson Elizabeth7,van Meurs Frank6

Affiliation:

1. Département de linguistique, Université Sorbonne 13 Paris Nord , Paris , France

2. Department of English, University of Klagenfurt , Klagenfurt 9020 , Austria

3. Neuphilologisches Institut/Romanistik, University of Würzburg , Würzburg , Germany

4. Quantitative Lexicology and Variational Linguistics , KU Leuven , Leuven , Belgium

5. Department of Professional and Intercultural Communication , Norges Handelshøyskole , Bergen , Norway

6. Department of Language and Communication, Radboud University , Nijmegen , The Netherlands

7. Department of Languages , University of Helsinki , Finland

Abstract

Abstract The global reach of the COVID-19 pandemic and the ensuing localized policy reactions provides a case to uncover how a global crisis translates into linguistic discourse. Based on the JSI Timestamped Web Corpora that are automatically POS-tagged and accessible via SketchEngine, this study compares French, German, Dutch, and English. After identifying the main names used to denote the virus and its disease, we extracted a total of 1,697 associated terms (according to logDice values) retrieved from news media data from January through October 2020. These associated words were then organized into categories describing the properties of the virus and the disease, their spatio-temporal features and their cause–effect dependencies. Analyzing the output cross-linguistically and across the first 10 months of the pandemic, a fairly stable semantic discourse space is found within and across each of the four languages, with an overall clear preference for visual and biomedical features as associated terms, though significant diatopic and diachronic shifts in the discourse space are also attested.

Publisher

Walter de Gruyter GmbH

Subject

Linguistics and Language,Language and Linguistics

Reference49 articles.

1. Abdul-Mageed, M., A. R. Elmadany, E. M. B. Nagoudi, D. Pabbi, K. Verma, and R. Lin. 2021. Mega-COV: A Billion-Scale Dataset of 100+ Languages for COVID-19. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 3402–20, Online. Association for Computational Linguistics. 10.18653/v1/2021.eacl-main.298.

2. Aslam, F., T. M. Awan, J. H. Syed, A. Kashif, and M. Parveen. 2020. “Sentiments and emotions evoked by news headlines of coronavirus disease (COVID-19) outbreak.” Humanities & Social Sciences Communication 7, 23.

3. Bai, G. H. 2020. “Fighting COVID-19 with Mongolian fiddle stories.” Multilingua 39(5), 577–86.

4. Balnat, V. 2020. “Unter Beobachtung: Corona-Wortschatz im Deutschen und Französischen [Under observation: Corona-Vocabulary in German and French].” Nouveaux Cahiers d’Allemand: Revue de linguistique et de didactique. Association des Nouveaux Cahiers d’Allemand. (hal-02931171).

5. Belhaj, S. 2020. “La pandémie Covid-19 et l’émergence d’un nouveau technolecte [The Covid-19 pandemic and the emergence of new technological vocabulary].” Revue Langues, Cultures et Sociétés 6(1), 28–38.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3