Author:
Wang Yan-Bin,You Zhu-Hong,Yang Shan,Yi Hai-Cheng,Chen Zhan-Heng,Zheng Kai
Abstract
Abstract
Background
The key to modern drug discovery is to find, identify and prepare drug molecular targets. However, due to the influence of throughput, precision and cost, traditional experimental methods are difficult to be widely used to infer these potential Drug-Target Interactions (DTIs). Therefore, it is urgent to develop effective computational methods to validate the interaction between drugs and target.
Methods
We developed a deep learning-based model for DTIs prediction. The proteins evolutionary features are extracted via Position Specific Scoring Matrix (PSSM) and Legendre Moment (LM) and associated with drugs molecular substructure fingerprints to form feature vectors of drug-target pairs. Then we utilized the Sparse Principal Component Analysis (SPCA) to compress the features of drugs and proteins into a uniform vector space. Lastly, the deep long short-term memory (DeepLSTM) was constructed for carrying out prediction.
Results
A significant improvement in DTIs prediction performance can be observed on experimental results, with AUC of 0.9951, 0.9705, 0.9951, 0.9206, respectively, on four classes important drug-target datasets. Further experiments preliminary proves that the proposed characterization scheme has great advantage on feature expression and recognition. We also have shown that the proposed method can work well with small dataset.
Conclusion
The results demonstration that the proposed approach has a great advantage over state-of-the-art drug-target predictor. To the best of our knowledge, this study first tests the potential of deep learning method with memory and Turing completeness in DTIs prediction.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Health Policy,Computer Science Applications
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献