Artificial Intelligence to Close the Gap between Pharmacokinetic/Pharmacodynamic Targets and Clinical Outcomes in Critically Ill Patients: A Narrative Review on Beta Lactams

Author:

Gonçalves Pereira João12ORCID,Fernandes Joana3ORCID,Mendes Tânia4ORCID,Gonzalez Filipe André5ORCID,Fernandes Susana M.6ORCID

Affiliation:

1. Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal

2. Serviço de Medicina Intensiva, Hospital Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal

3. Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, Serviço de Medicina Intensiva, Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal

4. Serviço de Medicina Interna, Hospital Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal

5. Serviço de Medicina Intensiva, Hospital Garcia De Orta, Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal

6. Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, Serviço de Medicina Intensiva, Hospital Santa Maria, Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal

Abstract

Antimicrobial dosing can be a complex challenge. Although a solid rationale exists for a link between antibiotic exposure and outcome, conflicting data suggest a poor correlation between pharmacokinetic/pharmacodynamic targets and infection control. Different reasons may lead to this discrepancy: poor tissue penetration by β-lactams due to inflammation and inadequate tissue perfusion; different bacterial response to antibiotics and biofilms; heterogeneity of the host’s immune response and drug metabolism; bacterial tolerance and acquisition of resistance during therapy. Consequently, either a fixed dose of antibiotics or a fixed target concentration may be doomed to fail. The role of biomarkers in understanding and monitoring host response to infection is also incompletely defined. Nowadays, with the ever-growing stream of data collected in hospitals, utilizing the most efficient analytical tools may lead to better personalization of therapy. The rise of artificial intelligence and machine learning has allowed large amounts of data to be rapidly accessed and analyzed. These unsupervised learning models can apprehend the data structure and identify homogeneous subgroups, facilitating the individualization of medical interventions. This review aims to discuss the challenges of β-lactam dosing, focusing on its pharmacodynamics and the new challenges and opportunities arising from integrating machine learning algorithms to personalize patient treatment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3