Evaluation of breast stiffness measured by ultrasound and breast density measured by MRI using a prone-supine deformation model

Author:

Chen Jeon-Hor,Chan Siwa,Zhang Yang,Li Shunshan,Chang Ruey-Feng,Su Min-Ying

Abstract

Abstract Background This study evaluated breast tissue stiffness measured by ultrasound elastography and the percent breast density measured by magnetic resonance imaging to understand their relationship. Methods Magnetic resonance imaging and whole breast ultrasound were performed in 20 patients with suspicious lesions. Only the contralateral normal breasts were analyzed. Breast tissue stiffness was measured from the echogenic homogeneous fibroglandular tissues in the central breast area underneath the nipple. An automatic, computer algorithm-based, segmentation method was used to segment the whole breast and fibroglandular tissues on three dimensional magnetic resonanceimaging. A finite element model was applied to deform the prone magnetic resonance imaging to match the supine ultrasound images, by using the inversed gravity loaded transformation. After deformation, the tissue level used in ultrasound elastography measurement could be estimated on the deformed supine magnetic resonance imaging to measure the breast density in the corresponding tissue region. Results The mean breast tissue stiffness was 2.3 ± 0.8 m/s. The stiffness was not correlated with age (r = 0.29). Overall, there was no positive correlation between breast stiffness and breast volume (r = − 0.14), or the whole breast percent density (r = − 0.09). There was also no correlation between breast stiffness and the local percent density measured from the corresponding region (r = − 0.12). Conclusions The lack of correlation between breast stiffness measured by ultrasound and the whole breast or local percent density measured by magnetic resonance imaging suggests that breast stiffness is not solely related to the amount of fibroglandular tissue. Further studies are needed to investigate whether they are dependent or independent cancer risk factors.

Funder

NIH

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of bioengineering techniques applied to breast tissue: Mechanical properties, tissue engineering and finite element analysis;Frontiers in Bioengineering and Biotechnology;2023-04-03

2. The creation of breast lesion models for mammographic virtual clinical trials: a topical review;Progress in Biomedical Engineering;2023-01-01

3. Mechanical properties of breast tissue;Biomechanics of the Female Reproductive System: Breast and Pelvic Organs;2023

4. Mimicking Multicellular Features of the Tumor Microenvironment;Biomaterial Based Approaches to Study the Tumour Microenvironment;2022-12-07

5. Association of breast cancer risk, density, and stiffness: global tissue stiffness on breast MR elastography (MRE);Breast Cancer Research and Treatment;2022-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3