The creation of breast lesion models for mammographic virtual clinical trials: a topical review

Author:

Van Camp AstridORCID,Houbrechts KatrienORCID,Cockmartin Lesley,Woodruff Henry C,Lambin Philippe,Marshall Nicholas WORCID,Bosmans Hilde

Abstract

Abstract Simulated breast lesion models, including microcalcification clusters and masses, have been used in several studies. Realistic lesion models are required for virtual clinical trials to be representative of clinical performance. Multiple methods exist to generate breast lesion models with various levels of realism depending on the application. First, lesion models can be obtained using mathematical methods, such as approximating a lesion with 3D geometric shapes or using algorithmic techniques such as iterative processes to grow a lesion. On the other hand, lesion models can be based on patient data. They can be either created starting from characteristics of real lesions or they can be a replica of clinical lesions by segmenting real cancer cases. Next, various approaches exist to embed these lesions into breast structures to create tumour cases. The simplest method, typically used for calcifications, is intensity scaling. Two other common approaches are the hybrid and total simulation method, in which the lesion model is inserted into a real breast image or a 3D breast model, respectively. In addition, artificial intelligence-based approaches can directly grow breast lesions in breast images. This article provides a review of the literature available on the development of lesion models, simulation methods to insert them into background structures and their applications, including optimisation studies, performance evaluation of software and education.

Funder

European Union’s Horizon 2020 research and innovation program

Publisher

IOP Publishing

Subject

Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3