High antioxidant and DNA protection activities of N-acetylglucosamine (GlcNAc) and chitobiose produced by exolytic chitinase from Bacillus cereus EW5

Author:

Azam Mohammed Shariful,Kim Eun Jung,Yang Han-Soeb,Kim Joong Kyun

Abstract

Abstract Chitin-degrading bacterial strains were screened and tested for their ability to degrade shrimp-shell waste (SSW). Among the potential strains, B. cereus EW5 exhibited the highest chitin-degrading ability compared with other strains and produced 24 mg of reducing sugar per gram of dry SSW after 4 days of incubation. A TLC analysis of SSW biodegradation revealed that the chitosaccharides produced in the culture supernatant were mainly N-acetylglucosamine (GlcNAc) and chitobiose due to the isolate’s exolytic chitinase activity. The culture supernatant exhibited a high degree of antioxidant activity, as indicated by 83% DPPH, 99.6% ABTS, 51% hydroxyl radical scavenging activity and 0.34 reducing power. The formation of GlcNAc and chitobiose during biodegradation of SSW is considered to be the major contributor to the antioxidant activity. The EW5 culture supernatant also displayed inhibition of DNA damage, enhancing the reutilization value of SSW. This report presents the first description of fermented production of GlcNAc and DNA protective activity of culture supernatant from SSW by B. cereus.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3