Human figure detection in Han portrait stone images via enhanced YOLO-v5

Author:

Zhang Junjie,Zhang Yuchen,Liu Jindong,Lan Yuxuan,Zhang Tianxiang

Abstract

AbstractThe unearthed Han Dynasty portrait stones are an important part of China’s ancient artistic heritage, and detecting human images in these stones is a critical prerequisite for studying their artistic value. However, high-precision target detection techniques often result in a large number of parameters, making them unsuitable for portable devices. In this work, we propose a new human image target detection model based on an enhanced YOLO-v5. We discovered that the complex backgrounds, dense group targets, and significant scale variations of targets within large scenes in portrait stones present significant challenges for human target image detection. Therefore, we first incorporated the SPD-Conv convolution and Coordinate Attention self-attention mechanism modules into the YOLO-v5 architecture, aiming to enhance the model’s recognition precision for small target images within Han portrait stones and strengthen its resistance to background disturbances. Moreover, we introduce DIoU NMS and Alpha-IoU Loss to improve the detector’s performance in dense target scenarios, reducing the omission of densely packed objects. Finally, the experimental results from our collected dataset of Han Dynasty stone figure images demonstrate that our method achieves fast convergence and high recognition accuracy. This approach can be better applied to the target detection tasks of special character images in complex backgrounds.

Publisher

Springer Science and Business Media LLC

Reference27 articles.

1. Chang K.-c. Early chinese civilization 1976;23.

2. Ebrey P. Later han stone inscriptions. Harvard J Asiatic Stud. 1980. 40:325–53.

3. Zou Z, Chen K, Shi Z, Guo Y, Ye J. Object detection in 20 years: a survey. Proc IEEE. 2023. 111:257–76.

4. Li Q, Chen Y, Zeng Y. Transformer with transfer cnn for remote-sensing-image object detection. Remote Sensing. 2022. 14:984.

5. Girshick R, Donahue J, Darrell T, Malik. Jitendra, rich feature hierarchies for accurate object detection and semantic segmentation. Proc IEEE Computer Vision Pattern Recogn. 2014. 98:580–7.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3