Transformer with Transfer CNN for Remote-Sensing-Image Object Detection

Author:

Li QingyunORCID,Chen Yushi,Zeng Ying

Abstract

Object detection in remote-sensing images (RSIs) is always a vibrant research topic in the remote-sensing community. Recently, deep-convolutional-neural-network (CNN)-based methods, including region-CNN-based and You-Only-Look-Once-based methods, have become the de-facto standard for RSI object detection. CNNs are good at local feature extraction but they have limitations in capturing global features. However, the attention-based transformer can obtain the relationships of RSI at a long distance. Therefore, the Transformer for Remote-Sensing Object detection (TRD) is investigated in this study. Specifically, the proposed TRD is a combination of a CNN and a multiple-layer Transformer with encoders and decoders. To detect objects from RSIs, a modified Transformer is designed to aggregate features of global spatial positions on multiple scales and model the interactions between pairwise instances. Then, due to the fact that the source data set (e.g., ImageNet) and the target data set (i.e., RSI data set) are quite different, to reduce the difference between the data sets, the TRD with the transferring CNN (T-TRD) based on the attention mechanism is proposed to adjust the pre-trained model for better RSI object detection. Because the training of the Transformer always needs abundant, well-annotated training samples, and the number of training samples for RSI object detection is usually limited, in order to avoid overfitting, data augmentation is combined with a Transformer to improve the detection performance of RSI. The proposed T-TRD with data augmentation (T-TRD-DA) is tested on the two widely-used data sets (i.e., NWPU VHR-10 and DIOR) and the experimental results reveal that the proposed models provide competitive results (i.e., centuple mean average precision of 87.9 and 66.8 with at most 5.9 and 2.4 higher than the comparison methods on the NWPU VHR-10 and the DIOR data sets, respectively) compared to the competitive benchmark methods, which shows that the Transformer-based method opens a new window for RSI object detection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3