Research on intelligent monitoring technology for roof damage of traditional Chinese residential buildings based on improved YOLOv8: taking ancient villages in southern Fujian as an example

Author:

Qiu Haochen,Zhang Jiahao,Zhuo Lingchen,Xiao Qi,Chen Zhihong,Tian Hua

Abstract

AbstractIn the process of preserving historical buildings in southern Fujian, China, it is crucial to provide timely and accurate statistical data to classify the damage of traditional buildings. In this study, a method based on the improved YOLOv8 neural network is proposed to select aerial photographs of six villages in Xiamen and Quanzhou cities in Fujian Province as the dataset, which contains a total of 3124 photographs. Based on the high-resolution orthophotographs obtained from UAV tilt photography, the YOLOv8 model was used to make predictions. The main task in the first stage is to select the buildings with historical value in the area, and the model's mAP (Mean Accuracy Rate) can reach 97.2% in the first stage task. The second stage uses the YOLOv8 model to segment the images selected in the first stage, detecting possible defects on the roofs, including collapses, missing tiles, unsuitable architectural additions, and vegetation encroachment. In the second stage of the segmentation task, the mAP reaches 89.4%, which is a 1.5% improvement in mAP50 (mean accuracy) compared to the original YOLOv8 model, and the number of parameters and GFLOPs are reduced by 22% and 15%, respectively. This method can effectively improve the disease detection efficiency of historical built heritage in southern Fujian under complex terrain and ground conditions.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities of Huaqiao University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3